IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4347-d788234.html
   My bibliography  Save this article

Optimization of a Fuel Cost and Enrichment of Line Loadability for a Transmission System by Using Rapid Voltage Stability Index and Grey Wolf Algorithm Technique

Author

Listed:
  • Rambabu Muppidi

    (Department of Electrical and Electronics, GMR Institute of Technology, Rajam 532127, India)

  • Ramakrishna S. S. Nuvvula

    (Department of Electrical and Electronics, GMR Institute of Technology, Rajam 532127, India)

  • S. M. Muyeen

    (Department of Electrical Engineering, Qatar University, Doha 2713, Qatar)

  • SK. A. Shezan

    (Department of Electrical Engineering, Engineering Institute of Technology, Melbourne 3008, Australia
    Department of Electrical and Electronic Engineering, Green University of Bangladesh, Dhaka 1027, Bangladesh)

  • Md. Fatin Ishraque

    (Department of Electrical, Electronic and Communication Engineering, Pabna University of Science and Technology, Pabna 6600, Bangladesh)

Abstract

Efficient transmission of power is a pressing concern in modern power systems as it could relieve additional investments (e.g., right of way) and may improve stability. Non-uniform loading of transmission lines (which normally occurs due to the inefficient transmission of power) may lead to overloading of a few lines. These lines would then be prone to voltage instability. However, this problem would be aggravated under the network contingency condition. This paper focuses on improving the line loadability of the transmission system by considering the benchmark voltage stability index named rapid voltage stability index. The optimal loadability problem is considered using the grey wolf algorithm. The proposed work is implemented on a standard IEEE 30 bus test system using MATLAB software by addressing the problem by using line stability voltage index and grey wolf algorithm in optimal power flow. Minimizations of cost of generation, carbon emissions, voltage deviation, and line losses have been considered as objectives and improve the line loadability of the transmission system. The simulation results show that the proposed method is very effective in improving line loadability, reducing line congestion and fuel cost. Furthermore, the methodology is tested rigorously under various contingency conditions and is shown to be very effective. The proposed method relieves transmission line congestion and reduces fuel costs using the rapid voltage stability index (RVSI) is tested on an IEEE 30-bus standard test system utilizing MATLAB for various contingency lines

Suggested Citation

  • Rambabu Muppidi & Ramakrishna S. S. Nuvvula & S. M. Muyeen & SK. A. Shezan & Md. Fatin Ishraque, 2022. "Optimization of a Fuel Cost and Enrichment of Line Loadability for a Transmission System by Using Rapid Voltage Stability Index and Grey Wolf Algorithm Technique," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4347-:d:788234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4347/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4347/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Rambabu & G. V. Nagesh Kumar & S. Sivanagaraju, 2019. "Optimal Power Flow of Integrated Renewable Energy System using a Thyristor Controlled SeriesCompensator and a Grey-Wolf Algorithm," Energies, MDPI, vol. 12(11), pages 1-18, June.
    2. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    3. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    4. Panda, Ambarish & Tripathy, M., 2015. "Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm," Energy, Elsevier, vol. 93(P1), pages 816-827.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Pourdaryaei & Amidaddin Shahriari & Mohammad Mohammadi & Mohammad Reza Aghamohammadi & Mazaher Karimi & Kimmo Kauhaniemi, 2023. "A New Approach for Long-Term Stability Estimation Based on Voltage Profile Assessment for a Power Grid," Energies, MDPI, vol. 16(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaled Nusair & Lina Alhmoud, 2020. "Application of Equilibrium Optimizer Algorithm for Optimal Power Flow with High Penetration of Renewable Energy," Energies, MDPI, vol. 13(22), pages 1-35, November.
    2. Peng Song & Zhisheng Zhang, 2023. "Research on Multiple Load Short-Term Forecasting Model of Integrated Energy Distribution System Based on Mogrifier-Quantum Weighted MELSTM," Energies, MDPI, vol. 16(9), pages 1-13, April.
    3. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    4. Rahmani, Shima & Amjady, Nima, 2017. "A new optimal power flow approach for wind energy integrated power systems," Energy, Elsevier, vol. 134(C), pages 349-359.
    5. Yuan Liu & Qinliang Tan & Jian Han & Mingxin Guo, 2021. "Energy-Water-Carbon Nexus Optimization for the Path of Achieving Carbon Emission Peak in China Considering Multiple Uncertainties: A Case Study in Inner Mongolia," Energies, MDPI, vol. 14(4), pages 1-21, February.
    6. Sheha, Moataz & Mohammadi, Kasra & Powell, Kody, 2021. "Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage," Applied Energy, Elsevier, vol. 282(PA).
    7. Wang, Jianzhou & Zhang, Linyue & Li, Zhiwu, 2022. "Interval forecasting system for electricity load based on data pre-processing strategy and multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 305(C).
    8. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    10. Ghoroghi, Ali & Petri, Ioan & Rezgui, Yacine & Alzahrani, Ateyah, 2023. "A deep learning approach to predict and optimise energy in fish processing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    11. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    12. Santiago Bustamante-Mesa & Jorge W. Gonzalez-Sanchez & Sergio D. Saldarriaga-Zuluaga & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2024. "Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection," Energies, MDPI, vol. 17(2), pages 1-20, January.
    13. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Man, Yi, 2022. "Industrial artificial intelligence based energy management system: Integrated framework for electricity load forecasting and fault prediction," Energy, Elsevier, vol. 244(PB).
    14. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    15. Khaled Nusair & Feras Alasali, 2020. "Optimal Power Flow Management System for a Power Network with Stochastic Renewable Energy Resources Using Golden Ratio Optimization Method," Energies, MDPI, vol. 13(14), pages 1-46, July.
    16. Lai, Changzhi & Wang, Yu & Fan, Kai & Cai, Qilin & Ye, Qing & Pang, Haoqiang & Wu, Xi, 2022. "An improved forecasting model of short-term electric load of papermaking enterprises for production line optimization," Energy, Elsevier, vol. 245(C).
    17. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
    18. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    19. Zhu, Jun-Hua & Wang, Jie-Sheng & Zheng, Yue & Zhang, Xing-Yue & Liu, Xun & Wang, Xiao-Tian & Zhang, Song-Bo, 2024. "Two-stage coevolutionary constrained multi-objective optimization algorithm for solving optimal power flow problems with wind power and FACTS devices," Renewable Energy, Elsevier, vol. 232(C).
    20. Mahdiyeh Eslami & Mehdi Neshat & Saifulnizam Abd. Khalid, 2022. "A Novel Hybrid Sine Cosine Algorithm and Pattern Search for Optimal Coordination of Power System Damping Controllers," Sustainability, MDPI, vol. 14(1), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4347-:d:788234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.