IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5275-d621791.html
   My bibliography  Save this article

Sizing Procedure for System Hybridization Based on Experimental Source Modeling for Electric Vehicles

Author

Listed:
  • Aaron Shmaryahu

    (Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel)

  • Nissim Amar

    (Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel)

  • Alexander Ivanov

    (Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel)

  • Ilan Aharon

    (Department of Electrical Engineering and Electronics, Ariel University, Ariel 40700, Israel)

Abstract

Hybrid vehicles are now more common in response to increasing global warming. The hybridization of energy sources and energy storage units enables improving the sustainability, reliability, and robustness of power systems. To reach the objective of zero emissions, a proton exchange membrane hydrogen fuel-cell was utilized as an energy source. The aim of this research was to create an accurate optimal sizing procedure for determining the nominal rating of the necessary sources. We modeled the fuel cell and the battery pack using data from real experimental results to create the generic database. Then, we added data on the mission profile, system constraints, and the minimization target function. The mission profile was then analyzed by the sizing algorithm to determine optional minimum and maximum fuel cell ratings. Analyzing the optional solutions using the vehicle real time energy management system controller resulted in a set of solutions for each available rated fuel cell, and the optimal compatible battery in the revealed band successfully accomplished the route of the driving cycle within the system limitations. Finally, the Pareto curve represented the optimal finding of the sizing procedure. Ultimately, in contrast to previous works that utilize gross manufacturer data in the sizing procedure, the main research contribution and novelty of this research is the very accurate sizing results, which draw on real experimental-based fuel-cell and battery sizing models. Moreover, the actual vehicle real time energy management system controllers were used in the sizing procedure.

Suggested Citation

  • Aaron Shmaryahu & Nissim Amar & Alexander Ivanov & Ilan Aharon, 2021. "Sizing Procedure for System Hybridization Based on Experimental Source Modeling for Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5275-:d:621791
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baodi Zhang & Sheng Guo & Xin Zhang & Qicheng Xue & Lan Teng, 2020. "Adaptive Smoothing Power Following Control Strategy Based on an Optimal Efficiency Map for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 13(8), pages 1-25, April.
    2. Christian Aichberger & Gerfried Jungmeier, 2020. "Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review," Energies, MDPI, vol. 13(23), pages 1-27, December.
    3. Wenshuo Tang & Darius Roman & Ross Dickie & Valentin Robu & David Flynn, 2020. "Prognostics and Health Management for the Optimization of Marine Hybrid Energy Systems," Energies, MDPI, vol. 13(18), pages 1-29, September.
    4. Iwona Komorska & Andrzej Puchalski & Andrzej Niewczas & Marcin Ślęzak & Tomasz Szczepański, 2021. "Adaptive Driving Cycles of EVs for Reducing Energy Consumption," Energies, MDPI, vol. 14(9), pages 1-18, May.
    5. Cong Hou & Hewu Wang & Minggao Ouyang, 2014. "Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis," Energies, MDPI, vol. 7(8), pages 1-26, August.
    6. Václav Mergl & Zdravko Pandur & Jan Klepárník & Hrvoje Kopseak & Marin Bačić & Marijan Šušnjar, 2021. "Technical Solutions of Forest Machine Hybridization," Energies, MDPI, vol. 14(10), pages 1-14, May.
    7. Mohamed Saad & Eduard Alarcón, 2018. "Insights into Dynamic Tuning of Magnetic-Resonant Wireless Power Transfer Receivers Based on Switch-Mode Gyrators," Energies, MDPI, vol. 11(2), pages 1-23, February.
    8. Roman Niestrój & Tomasz Rogala & Wojciech Skarka, 2020. "An Energy Consumption Model for Designing an AGV Energy Storage System with a PEMFC Stack," Energies, MDPI, vol. 13(13), pages 1-31, July.
    9. Tomasz Rokicki & Grzegorz Koszela & Luiza Ochnio & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Konrad Michalski & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Diversity and Changes in Energy Consumption by Transport in EU Countries," Energies, MDPI, vol. 14(17), pages 1-21, August.
    10. Ali Bin Junaid & Aleksay Konoiko & Yahya Zweiri & M. Necip Sahinkaya & Lakmal Seneviratne, 2017. "Autonomous Wireless Self-Charging for Multi-Rotor Unmanned Aerial Vehicles," Energies, MDPI, vol. 10(6), pages 1-14, June.
    11. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    12. Juan-Guillermo Muñoz & Guillermo Gallo & Fabiola Angulo & Gustavo Osorio, 2018. "Slope Compensation Design for a Peak Current-Mode Controlled Boost-Flyback Converter," Energies, MDPI, vol. 11(11), pages 1-18, November.
    13. Arun, P. & Banerjee, Rangan & Bandyopadhyay, Santanu, 2008. "Optimum sizing of battery-integrated diesel generator for remote electrification through design-space approach," Energy, Elsevier, vol. 33(7), pages 1155-1168.
    14. Konrad Prajwowski & Wawrzyniec Golebiewski & Maciej Lisowski & Karol F. Abramek & Dominik Galdynski, 2020. "Modeling of Working Machines Synergy in the Process of the Hybrid Electric Vehicle Acceleration," Energies, MDPI, vol. 13(21), pages 1-20, November.
    15. Ehsan Rasoulinezhad & Farhad Taghizadeh-Hesary & Farzad Taghizadeh-Hesary, 2020. "How Is Mortality Affected by Fossil Fuel Consumption, CO 2 Emissions and Economic Factors in CIS Region?," Energies, MDPI, vol. 13(9), pages 1-13, May.
    16. Tom Fletcher & Kambiz Ebrahimi, 2020. "The Effect of Fuel Cell and Battery Size on Efficiency and Cell Lifetime for an L7e Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 13(22), pages 1-18, November.
    17. Alexander Rohr & Clemens Jauch, 2021. "Software-in-the-Loop Simulation of a Gas-Engine for the Design and Testing of a Wind Turbine Emulator," Energies, MDPI, vol. 14(10), pages 1-20, May.
    18. Rishikesh Mahesh Bagwe & Andy Byerly & Euzeli Cipriano dos Santos & Zina Ben-Miled, 2019. "Adaptive Rule-Based Energy Management Strategy for a Parallel HEV," Energies, MDPI, vol. 12(23), pages 1-17, November.
    19. Sunghun Jung & Heon Jeong, 2017. "Extended Kalman Filter-Based State of Charge and State of Power Estimation Algorithm for Unmanned Aerial Vehicle Li-Po Battery Packs," Energies, MDPI, vol. 10(8), pages 1-13, August.
    20. Anna Manowska & Andrzej Nowrot, 2019. "The Importance of Heat Emission Caused by Global Energy Production in Terms of Climate Impact," Energies, MDPI, vol. 12(16), pages 1-12, August.
    21. Adham Kaloun & Stéphane Brisset & Maxime Ogier & Mariam Ahmed & Robin Vincent, 2021. "Comparison of Cycle Reduction and Model Reduction Strategies for the Design Optimization of Hybrid Powertrains on Driving Cycles," Energies, MDPI, vol. 14(4), pages 1-24, February.
    22. Ricardo Bonache-Samaniego & Carlos Olalla & Hugo Valderrama-Blavi & Luis Martínez-Salamero, 2020. "Analysis and Design of Self-Oscillating Resonant Converters with Loss-Free Resistor Characteristics," Energies, MDPI, vol. 13(14), pages 1-24, July.
    23. Tomasz Rokicki & Aleksandra Perkowska, 2021. "Diversity and Changes in the Energy Balance in EU Countries," Energies, MDPI, vol. 14(4), pages 1-19, February.
    24. Carmen Raga & Andres Barrado & Henry Miniguano & Antonio Lazaro & Isabel Quesada & Alberto Martin-Lozano, 2018. "Analysis and Sizing of Power Distribution Architectures Applied to Fuel Cell Based Vehicles," Energies, MDPI, vol. 11(10), pages 1-30, September.
    25. Margareta Novian Cahyanti & Tharaka Rama Krishna C. Doddapaneni & Marten Madissoo & Linnar Pärn & Indrek Virro & Timo Kikas, 2021. "Torrefaction of Agricultural and Wood Waste: Comparative Analysis of Selected Fuel Characteristics," Energies, MDPI, vol. 14(10), pages 1-19, May.
    26. Zikhona Nondudule & Jessica Chamier & Mahabubur Chowdhury, 2021. "Effect of Stratification of Cathode Catalyst Layers on Durability of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(10), pages 1-17, May.
    27. Ji’ang Zhang & Ping Wang & Yushu Liu & Ze Cheng, 2021. "Variable-Order Equivalent Circuit Modeling and State of Charge Estimation of Lithium-Ion Battery Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 14(3), pages 1-20, February.
    28. Aharon, Ilan & Shmilovitz, Doron & Kuperman, Alon, 2017. "Multimode power processing interface for fuel cell range extender in battery powered vehicle," Applied Energy, Elsevier, vol. 204(C), pages 572-581.
    29. Xintian Liu & Yafei Sun & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2017. "Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits," Energies, MDPI, vol. 10(10), pages 1-16, September.
    30. Xiaofeng Zhang & Run Min & Donglai Zhang & Yi Wang, 2018. "An Optimized Sensorless Charge Balance Controller Based on a Damped Current Model for Flyback Converter Operating in DCM," Energies, MDPI, vol. 11(12), pages 1-15, December.
    31. Nissim Amar & Aaron Shmaryahu & Michael Coletti & Ilan Aharon, 2021. "Sizing Procedure for System Hybridization Based on Experimental Source Modeling in Grid Application," Energies, MDPI, vol. 14(15), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Loreti & Alessandro Rosati & Ilaria Baffo & Stefano Ubertini & Andrea Luigi Facci, 2024. "Optimized Design of a H 2 -Powered Moped for Urban Mobility," Energies, MDPI, vol. 17(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nissim Amar & Aaron Shmaryahu & Michael Coletti & Ilan Aharon, 2021. "Sizing Procedure for System Hybridization Based on Experimental Source Modeling in Grid Application," Energies, MDPI, vol. 14(15), pages 1-19, August.
    2. Tomasz Rokicki & Radosław Jadczak & Adam Kucharski & Piotr Bórawski & Aneta Bełdycka-Bórawska & András Szeberényi & Aleksandra Perkowska, 2022. "Changes in Energy Consumption and Energy Intensity in EU Countries as a Result of the COVID-19 Pandemic by Sector and Area Economy," Energies, MDPI, vol. 15(17), pages 1-26, August.
    3. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    4. Woo-Yong Kim & Pyeong-Yeon Lee & Jonghoon Kim & Kyung-Soo Kim, 2019. "A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles," Energies, MDPI, vol. 12(17), pages 1-20, September.
    5. Olga Pilipczuk, 2021. "Determinants of Managerial Competences Transformation in the Polish Energy Industry," Energies, MDPI, vol. 14(20), pages 1-27, October.
    6. Tadeusz Białoń & Roman Niestrój & Wojciech Korski, 2023. "PSO-Based Identification of the Li-Ion Battery Cell Parameters," Energies, MDPI, vol. 16(10), pages 1-22, May.
    7. Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
    8. Rafał Trzaska & Adam Sulich & Michał Organa & Jerzy Niemczyk & Bartosz Jasiński, 2021. "Digitalization Business Strategies in Energy Sector: Solving Problems with Uncertainty under Industry 4.0 Conditions," Energies, MDPI, vol. 14(23), pages 1-21, November.
    9. Sunghun Jung & Yonghyeon Jo & Young-Joon Kim, 2019. "Flight Time Estimation for Continuous Surveillance Missions Using a Multirotor UAV," Energies, MDPI, vol. 12(5), pages 1-15, March.
    10. Tomasz Rokicki & Piotr Bórawski & András Szeberényi, 2023. "The Impact of the 2020–2022 Crises on EU Countries’ Independence from Energy Imports, Particularly from Russia," Energies, MDPI, vol. 16(18), pages 1-26, September.
    11. Tomasz Rokicki & Piotr Bórawski & Barbara Gradziuk & Piotr Gradziuk & Aldona Mrówczyńska-Kamińska & Joanna Kozak & Danuta Jolanta Guzal-Dec & Kamil Wojtczuk, 2021. "Differentiation and Changes of Household Electricity Prices in EU Countries," Energies, MDPI, vol. 14(21), pages 1-21, October.
    12. László Török, 2023. "Effects of Energy Economic Variables on the Economic Growth of the European Union (2010–2019)," Energies, MDPI, vol. 16(16), pages 1-17, August.
    13. Krystyna Gomółka & Piotr Kasprzak, 2022. "Household Ability of Expenditures on Electricity and Energy Resources in the Countries That Joined the EU after 2004," Energies, MDPI, vol. 15(9), pages 1-21, April.
    14. Chia-Hsuan Wu & Guan-Rong Huang & Cheng-Chih Chou & Ching-Ming Lai & Liang-Rui Chen, 2021. "A Compensated Peak Current Mode Control PWM for Primary-Side Controlled Flyback Converters," Energies, MDPI, vol. 14(22), pages 1-12, November.
    15. Tadeusz Białoń & Roman Niestrój & Wojciech Skarka & Wojciech Korski, 2023. "HPPC Test Methodology Using LFP Battery Cell Identification Tests as an Example," Energies, MDPI, vol. 16(17), pages 1-21, August.
    16. Andreas von Döllen & YoungSeok Hwang & Stephan Schlüter, 2021. "The Future Is Colorful—An Analysis of the CO 2 Bow Wave and Why Green Hydrogen Cannot Do It Alone," Energies, MDPI, vol. 14(18), pages 1-20, September.
    17. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    18. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    19. Tajul Masron & Mduduzi Biyase & Talent Zwane & Thomas Udimal & Frederich Kirsten, 2023. "Ecological footprint and population health outcomes: an analysis of E7 countries," Economics Working Papers edwrg-07-2023, College of Business and Economics, University of Johannesburg, South Africa, revised 2023.
    20. Alexandros Nikolian & Yousef Firouz & Rahul Gopalakrishnan & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2016. "Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion," Energies, MDPI, vol. 9(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5275-:d:621791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.