IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4676-d410691.html
   My bibliography  Save this article

Prognostics and Health Management for the Optimization of Marine Hybrid Energy Systems

Author

Listed:
  • Wenshuo Tang

    (The School of Engineering and Physical Sciences, Smart System Group, Heriot Watt University, Edinburgh EH14 4AS, UK)

  • Darius Roman

    (The School of Engineering and Physical Sciences, Smart System Group, Heriot Watt University, Edinburgh EH14 4AS, UK)

  • Ross Dickie

    (The School of Engineering and Physical Sciences, Smart System Group, Heriot Watt University, Edinburgh EH14 4AS, UK)

  • Valentin Robu

    (The School of Engineering and Physical Sciences, Smart System Group, Heriot Watt University, Edinburgh EH14 4AS, UK)

  • David Flynn

    (The School of Engineering and Physical Sciences, Smart System Group, Heriot Watt University, Edinburgh EH14 4AS, UK)

Abstract

Decarbonization of marine transport is a key global issue, with the carbon emissions of international shipping projected to increase 23% to 1090 million tonnes by 2035 in comparison to 2015 levels. Optimization of the energy system (especially propulsion system) in these vessels is a complex multi-objective challenge involving economical maintenance, environmental metrics, and energy demand requirements. In this paper, data from instrumented vessels on the River Thames in London, which includes environmental emissions, power demands, journey patterns, and variance in operational patterns from the captain(s) and loading (passenger numbers), is integrated and analyzed through automatic, multi-objective global optimization to create an optimal hybrid propulsion configuration for a hybrid vessel. We propose and analyze a number of computational techniques, both for monitoring and remaining useful lifetime (RUL) estimation of individual energy assets, as well as modeling and optimization of energy use scenarios of a hybrid-powered vessel. Our multi-objective optimization relates to emissions, asset health, and power performance. We show that, irrespective of the battery packs used, our Relevance Vector Machine (RVM) algorithm is able to achieve over 92% accuracy in remaining useful life (RUL) predictions. A k-nearest neighbors algorithm (KNN) is proposed for prognostics of state of charge (SOC) of back-up lead-acid batteries. The classifier achieved an average of 95.5% accuracy in a three-fold cross validation. Utilizing operational data from the vessel, optimal autonomous propulsion strategies are modeled combining the use of battery and diesel engines. The experiment results show that 70% to 80% of fuel saving can be achieved when the diesel engine is operated up to 350 kW. Our methodology has demonstrated the feasibility of combination of artificial intelligence (AI) methods and real world data in decarbonization and optimization of green technologies for maritime propulsion.

Suggested Citation

  • Wenshuo Tang & Darius Roman & Ross Dickie & Valentin Robu & David Flynn, 2020. "Prognostics and Health Management for the Optimization of Marine Hybrid Energy Systems," Energies, MDPI, vol. 13(18), pages 1-29, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4676-:d:410691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Chao & Jain, Gaurav & Zhang, Puqiang & Schmidt, Craig & Gomadam, Parthasarathy & Gorka, Tom, 2014. "Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery," Applied Energy, Elsevier, vol. 129(C), pages 49-55.
    2. Dong, Ming & He, David, 2007. "Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis," European Journal of Operational Research, Elsevier, vol. 178(3), pages 858-878, May.
    3. Datong Liu & Hong Wang & Yu Peng & Wei Xie & Haitao Liao, 2013. "Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction," Energies, MDPI, vol. 6(8), pages 1-15, July.
    4. Wei He & Michael Pecht & David Flynn & Fateme Dinmohammadi, 2018. "A Physics-Based Electrochemical Model for Lithium-Ion Battery State-of-Charge Estimation Solved by an Optimised Projection-Based Method and Moving-Window Filtering," Energies, MDPI, vol. 11(8), pages 1-23, August.
    5. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron Shmaryahu & Nissim Amar & Alexander Ivanov & Ilan Aharon, 2021. "Sizing Procedure for System Hybridization Based on Experimental Source Modeling for Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-21, August.
    2. Saurabh Saxena & Darius Roman & Valentin Robu & David Flynn & Michael Pecht, 2021. "Battery Stress Factor Ranking for Accelerated Degradation Test Planning Using Machine Learning," Energies, MDPI, vol. 14(3), pages 1-17, January.
    3. Tsoumpris, Charalampos & Theotokatos, Gerasimos, 2023. "A decision-making approach for the health-aware energy management of ship hybrid power plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Bruce Stephen, 2022. "Machine Learning Applications in Power System Condition Monitoring," Energies, MDPI, vol. 15(5), pages 1-2, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    2. Yang Zhang & Bo Guo, 2015. "Online Capacity Estimation of Lithium-Ion Batteries Based on Novel Feature Extraction and Adaptive Multi-Kernel Relevance Vector Machine," Energies, MDPI, vol. 8(11), pages 1-19, November.
    3. Zhao, Dao & Zhou, Zhijie & Tang, Shuaiwen & Cao, You & Wang, Jie & Zhang, Peng & Zhang, Yijun, 2022. "Online estimation of satellite lithium-ion battery capacity based on approximate belief rule base and hidden Markov model," Energy, Elsevier, vol. 256(C).
    4. Jiang, Nanhua & Zhang, Jiawei & Jiang, Weiran & Ren, Yao & Lin, Jing & Khoo, Edwin & Song, Ziyou, 2024. "Driving behavior-guided battery health monitoring for electric vehicles using extreme learning machine," Applied Energy, Elsevier, vol. 364(C).
    5. Cai, Yishan & Yang, Lin & Deng, Zhongwei & Zhao, Xiaowei & Deng, Hao, 2018. "Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine," Energy, Elsevier, vol. 147(C), pages 621-635.
    6. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    7. Qinming Liu & Daigao Li & Wenyi Liu & Tangbin Xia & Jiaxiang Li, 2021. "A Novel Health Prognosis Method for a Power System Based on a High-Order Hidden Semi-Markov Model," Energies, MDPI, vol. 14(24), pages 1-19, December.
    8. Li, Yue & Chattopadhyay, Pritthi & Xiong, Sihan & Ray, Asok & Rahn, Christopher D., 2016. "Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge," Applied Energy, Elsevier, vol. 184(C), pages 266-275.
    9. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Sorce, A. & Greco, A. & Magistri, L. & Costamagna, P., 2014. "FDI oriented modeling of an experimental SOFC system, model validation and simulation of faulty states," Applied Energy, Elsevier, vol. 136(C), pages 894-908.
    11. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    12. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    14. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    15. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    16. Miretti, Federico & Misul, Daniela & Gennaro, Giulio & Ferrari, Antonio, 2022. "Hybridizing waterborne transport: Modeling and simulation of low-emissions hybrid waterbuses for the city of Venice," Energy, Elsevier, vol. 244(PB).
    17. Jing Hou & He He & Yan Yang & Tian Gao & Yifan Zhang, 2019. "A Variational Bayesian and Huber-Based Robust Square Root Cubature Kalman Filter for Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(9), pages 1-23, May.
    18. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    19. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    20. Jun Peng & Zhiyong Zheng & Xiaoyong Zhang & Kunyuan Deng & Kai Gao & Heng Li & Bin Chen & Yingze Yang & Zhiwu Huang, 2020. "A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 13(3), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4676-:d:410691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.