IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3478-d190275.html
   My bibliography  Save this article

An Optimized Sensorless Charge Balance Controller Based on a Damped Current Model for Flyback Converter Operating in DCM

Author

Listed:
  • Xiaofeng Zhang

    (Harbin Institute of Technology Shenzhen Graduate School; Shenzhen 518055, China
    Beijing Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China)

  • Run Min

    (School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Donglai Zhang

    (Harbin Institute of Technology Shenzhen Graduate School; Shenzhen 518055, China)

  • Yi Wang

    (Harbin Institute of Technology Shenzhen Graduate School; Shenzhen 518055, China)

Abstract

This paper presents an Optimized Sensorless Charge Balance (OSCB) controller based on a damped current model for flyback converter operating in Discontinuous Conduction Mode (DCM). By solving total differential equations of non-ideal transformer currents, the damped current model is derived with consideration of parasitics, leakage inductance of transformer, and the Resistor-Capacitor-Diode (RCD) snubber circuit. Based on the proposed model, current observation and control algorithms of the Sensorless Charge Balance (SCB) controller are optimized, which forms the OSCB control strategy. The average current damping is considered in the equivalent discrete-time small signal model. Furthermore, frequency analyses show that OSCB controller achieves higher closed-loop bandwidth and lower overshoot than a SCB controller, which indicates an improved transient performance. Finally, both OSCB and conventional SCB controllers are experimentally evaluated on a flyback converter prototype.

Suggested Citation

  • Xiaofeng Zhang & Run Min & Donglai Zhang & Yi Wang, 2018. "An Optimized Sensorless Charge Balance Controller Based on a Damped Current Model for Flyback Converter Operating in DCM," Energies, MDPI, vol. 11(12), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3478-:d:190275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3478/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Run Min & Dian Lyu & Shuai Cheng & Yingshui Sun & Linkai Li, 2019. "Linearized Discrete Charge Balance Control with Simplified Algorithm for DCM Buck Converter," Energies, MDPI, vol. 12(16), pages 1-17, August.
    2. Aaron Shmaryahu & Nissim Amar & Alexander Ivanov & Ilan Aharon, 2021. "Sizing Procedure for System Hybridization Based on Experimental Source Modeling for Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-21, August.
    3. Chia-Hsuan Wu & Guan-Rong Huang & Cheng-Chih Chou & Ching-Ming Lai & Liang-Rui Chen, 2021. "A Compensated Peak Current Mode Control PWM for Primary-Side Controlled Flyback Converters," Energies, MDPI, vol. 14(22), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3478-:d:190275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.