IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4965-d613745.html
   My bibliography  Save this article

The Influences of NP100 Surfactant and Pine-Oil Concentrations on Filtrate Volume and Filter-Cake Thickness of Microemulsion-Based Drilling Fluids (O/W)

Author

Listed:
  • Agostinho C. B. Junior

    (Postgraduate Program in Chemical Engineering, Federal University of Paraíba, João Pessoa 58051-900, Brazil)

  • Raphael R. Silva

    (Postgraduate Program in Chemical Engineering, Federal University of Paraíba, João Pessoa 58051-900, Brazil)

  • Giovanna L. R. Leal

    (Chemical Engineering Department, Federal University of Paraíba, João Pessoa 58051-900, Brazil)

  • Tarsila M. Tertuliano

    (Chemical Engineering Department, Federal University of Paraíba, João Pessoa 58051-900, Brazil)

  • Rafael P. Alves

    (Chemical Engineering Department, Federal University of Paraíba, João Pessoa 58051-900, Brazil)

  • Alfredo I. C. Garnica

    (Postgraduate Program in Chemical Engineering, Federal University of Paraíba, João Pessoa 58051-900, Brazil
    Chemical Engineering Department, Federal University of Paraíba, João Pessoa 58051-900, Brazil)

  • Fabiola D. S. Curbelo

    (Postgraduate Program in Chemical Engineering, Federal University of Paraíba, João Pessoa 58051-900, Brazil
    Chemical Engineering Department, Federal University of Paraíba, João Pessoa 58051-900, Brazil)

Abstract

In this work, nonionic surfactant NP100 and pine oil influences on the filtrate volume (F V ) and the filter-cake thickness (thkns) of microemulsified drilling fluids were studied. A ternary phase diagram was obtained to define the microemulsion region, where a 2 k factorial design was used with the addition of four center points and axial points. Twelve microemulsion points were defined and used later in the formulation of the investigated drilling fluids. The results showed that the increase in the surfactant and pine oil’s concentration increased F V and thkns, withthe oil phase being the most influential component in the filtrate volume and the surfactant being the most influential in the filter-cake thickness. Statistically significant models were obtained. The optimal concentrations were determined for the lowest F V and thkns; 45% of surfactant and 5% of pine oil for the filtrate volume (1.3 mL), and 45% of surfactant and 15% of pine oil for the filter-cake thickness (0.64 mm).

Suggested Citation

  • Agostinho C. B. Junior & Raphael R. Silva & Giovanna L. R. Leal & Tarsila M. Tertuliano & Rafael P. Alves & Alfredo I. C. Garnica & Fabiola D. S. Curbelo, 2021. "The Influences of NP100 Surfactant and Pine-Oil Concentrations on Filtrate Volume and Filter-Cake Thickness of Microemulsion-Based Drilling Fluids (O/W)," Energies, MDPI, vol. 14(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4965-:d:613745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Ali & Husna Hayati Jarni & Adnan Aftab & Abdul Razak Ismail & Noori M. Cata Saady & Muhammad Faraz Sahito & Alireza Keshavarz & Stefan Iglauer & Mohammad Sarmadivaleh, 2020. "Nanomaterial-Based Drilling Fluids for Exploitation of Unconventional Reservoirs: A Review," Energies, MDPI, vol. 13(13), pages 1-30, July.
    2. Zisis Vryzas & Vassilios C. Kelessidis, 2017. "Nano-Based Drilling Fluids: A Review," Energies, MDPI, vol. 10(4), pages 1-34, April.
    3. Aftab, A. & Ismail, A.R. & Ibupoto, Z.H. & Akeiber, H. & Malghani, M.G.K., 2017. "Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1301-1313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roxana P. F. de Sousa & Glauco S. Braga & Raphael R. da Silva & Giovanna L. R. Leal & Júlio C. O. Freitas & Vivian S. Madera & Alfredo I. C. Garnica & Fabiola D. S. Curbelo, 2021. "Formulation and Study of an Environmentally Friendly Microemulsion-Based Drilling Fluid (O/W) with Pine Oil," Energies, MDPI, vol. 14(23), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Razali, S.Z. & Yunus, R. & Abdul Rashid, Suraya & Lim, H.N. & Mohamed Jan, B., 2018. "Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 171-186.
    2. Omid Mosalman Haghighi & Ghasem Zargar & Abbas Khaksar Manshad & Muhammad Ali & Mohammad Ali Takassi & Jagar A. Ali & Alireza Keshavarz, 2020. "Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery," Energies, MDPI, vol. 13(15), pages 1-18, August.
    3. Mikhail A. Sheremet & Hakan F. Oztop & Dmitriy V. Gvozdyakov & Mohamed E. Ali, 2018. "Impacts of Heat-Conducting Solid Wall and Heat-Generating Element on Free Convection of Al 2 O 3 /H 2 O Nanofluid in a Cavity with Open Border," Energies, MDPI, vol. 11(12), pages 1-17, December.
    4. Camilo Andrés Guerrero-Martin & Angie Tatiana Ortega-Ramírez & Paula Alejandra Perilla Rodríguez & Shalom Jireth Reyes López & Laura Estefanía Guerrero-Martin & Raúl Salinas-Silva & Stefanny Camacho-G, 2023. "Analysis of Environmental Sustainability through a Weighting Matrix in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    5. S. M. Talha Qadri & Waqas Ahmed & A. K. M. Eahsanul Haque & Ahmed E. Radwan & Mohammad Hail Hakimi & Ahmed K. Abdel Aal, 2022. "Murree Clay Problems and Water-Based Drilling Mud Optimization: A Case Study from the Kohat Basin in Northwestern Pakistan," Energies, MDPI, vol. 15(9), pages 1-16, May.
    6. Rengguang Liu & Yan Li & Tao Du & Shiming Zhou & Peiqing Lu & Yongliang Wang, 2022. "Insight into Class G Wellbore Cement Hydration and Mechanism at 150 °C Using Molecular Dynamics," Energies, MDPI, vol. 15(16), pages 1-14, August.
    7. Yulong Yang & Han Liu & Weixuan Mao & Zhaojie Song & Haizhu Wang, 2020. "Study on the Impact Pressure of Swirling-Round Supercritical CO 2 Jet Flow and Its Influencing Factors," Energies, MDPI, vol. 14(1), pages 1-15, December.
    8. Pinghe Sun & Junyi Zhu & Binkui Zhao & Xinxin Zhang & Han Cao & Mingjin Tian & Meng Han & Weisheng Liu, 2019. "Study on the Mechanism of Ionic Stabilizers on Shale Gas Reservoir Mechanics in Northwestern Hunan," Energies, MDPI, vol. 12(12), pages 1-11, June.
    9. Yang, Xianyu & Xie, Jingyu & Ye, Xiaoping & Chen, Shuya & Jiang, Guosheng & Cai, Jihua & Shi, Yanping & Yue, Ye & Xue, Man & Dai, Zhaokai & Fang, Changliang, 2023. "Sealing characteristics and discrete element fluid dynamics analysis of nanofiber in nanoscale shale pores: Modeling and prediction," Energy, Elsevier, vol. 273(C).
    10. Jurij Šporin & Tilen Balaško & Primož Mrvar & Blaž Janc & Željko Vukelić, 2020. "Change of the Properties of Steel Material of the Roller Cone Bit Due to the Influence of the Drilling Operational Parameters and Rock Properties," Energies, MDPI, vol. 13(22), pages 1-22, November.
    11. Borivoje Pašić & Nediljka Gaurina-Međimurec & Petar Mijić & Igor Medved, 2020. "Experimental Research of Shale Pellet Swelling in Nano-Based Drilling Muds," Energies, MDPI, vol. 13(23), pages 1-17, November.
    12. Muhammad Ali & Husna Hayati Jarni & Adnan Aftab & Abdul Razak Ismail & Noori M. Cata Saady & Muhammad Faraz Sahito & Alireza Keshavarz & Stefan Iglauer & Mohammad Sarmadivaleh, 2020. "Nanomaterial-Based Drilling Fluids for Exploitation of Unconventional Reservoirs: A Review," Energies, MDPI, vol. 13(13), pages 1-30, July.
    13. Shuya Chen & Yanping Shi & Xianyu Yang & Kunzhi Xie & Jihua Cai, 2019. "Design and Evaluation of a Surfactant–Mixed Metal Hydroxide-Based Drilling Fluid for Maintaining Wellbore Stability in Coal Measure Strata," Energies, MDPI, vol. 12(10), pages 1-19, May.
    14. Salaheldin Elkatatny, 2018. "Enhancing the Stability of Invert Emulsion Drilling Fluid for Drilling in High-Pressure High-Temperature Conditions," Energies, MDPI, vol. 11(9), pages 1-15, September.
    15. Alaa Ahmed & Amin Sharifi Haddad & Roozbeh Rafati & Ahmed Bashir & Ahmed M. AlSabagh & Amany A. Aboulrous, 2021. "Developing a Thermally Stable Ester-Based Drilling Fluid for Offshore Drilling Operations by Using Aluminum Oxide Nanorods," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    16. Hany Gamal & Salaheldin Elkatatny & Salem Basfar & Abdulaziz Al-Majed, 2019. "Effect of pH on Rheological and Filtration Properties of Water-Based Drilling Fluid Based on Bentonite," Sustainability, MDPI, vol. 11(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4965-:d:613745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.