IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3399-d520203.html
   My bibliography  Save this article

Developing a Thermally Stable Ester-Based Drilling Fluid for Offshore Drilling Operations by Using Aluminum Oxide Nanorods

Author

Listed:
  • Alaa Ahmed

    (School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK)

  • Amin Sharifi Haddad

    (School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK)

  • Roozbeh Rafati

    (School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK)

  • Ahmed Bashir

    (School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK)

  • Ahmed M. AlSabagh

    (Petroleum Application Department, Egyptian Petroleum Research Institute, Cairo, Egypt)

  • Amany A. Aboulrous

    (Production Department, Egyptian Petroleum Research Institute, Cairo, Egypt)

Abstract

Esters were found to be promising alternatives to oil, as a constituent of drilling fluids, due to their biodegradability and bioaccumulation attributes. In this study, we used ethyl octanoate ester (EO) as a low molecular weight synthetic oil for formulating an ester-based drilling fluid (EBDF). Aluminum oxide nanorods (nanoparticles) were introduced as a Pickering emulsion stabilizer. Like the commercial emulsifiers, they showed that they stabilized the invert emulsion drilling fluid in our study. The rheological and filtration properties of the EBDF were tested at normal pressure and three temperatures: low temperature deepwater (LT) conditions of 2.6 °C, normal pressure and normal temperature (NPNT) conditions of 26.8 °C, and elevated temperature conditions of 70 °C. To enhance the stability and filtration properties of the drilling fluid, aluminum oxide nanoparticles (NPs) were used. An optimum concentration of 1 wt% was found to provide superior rheological performance and higher stability than samples without NPs at NPNT, LT, and elevated temperature conditions. Steadier gel rheology was exhibited at elevated temperature conditions, and a slow rate of an increasing trend occurred at the lower temperatures, with increasing NP concentrations up to 1.5 wt%. Filtration loss tests presented a reduction of fluid loss with increasing the NP concentration. The results demonstrate that a reduction of up to 45% was achieved with the addition of 1 wt% NP. These results show that nano-enhancement of ethyl octanoate drilling fluids would suffice to provide a wider range of operational temperatures for deepwater drilling operations by providing better thermal stability at elevated temperatures and maintaining stability at lower temperatures.

Suggested Citation

  • Alaa Ahmed & Amin Sharifi Haddad & Roozbeh Rafati & Ahmed Bashir & Ahmed M. AlSabagh & Amany A. Aboulrous, 2021. "Developing a Thermally Stable Ester-Based Drilling Fluid for Offshore Drilling Operations by Using Aluminum Oxide Nanorods," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3399-:d:520203
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Razali, S.Z. & Yunus, R. & Abdul Rashid, Suraya & Lim, H.N. & Mohamed Jan, B., 2018. "Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 171-186.
    2. Zisis Vryzas & Vassilios C. Kelessidis, 2017. "Nano-Based Drilling Fluids: A Review," Energies, MDPI, vol. 10(4), pages 1-34, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikhail A. Sheremet & Hakan F. Oztop & Dmitriy V. Gvozdyakov & Mohamed E. Ali, 2018. "Impacts of Heat-Conducting Solid Wall and Heat-Generating Element on Free Convection of Al 2 O 3 /H 2 O Nanofluid in a Cavity with Open Border," Energies, MDPI, vol. 11(12), pages 1-17, December.
    2. Razali, S.Z. & Yunus, R. & Abdul Rashid, Suraya & Lim, H.N. & Mohamed Jan, B., 2018. "Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 171-186.
    3. Pinghe Sun & Junyi Zhu & Binkui Zhao & Xinxin Zhang & Han Cao & Mingjin Tian & Meng Han & Weisheng Liu, 2019. "Study on the Mechanism of Ionic Stabilizers on Shale Gas Reservoir Mechanics in Northwestern Hunan," Energies, MDPI, vol. 12(12), pages 1-11, June.
    4. Jurij Šporin & Tilen Balaško & Primož Mrvar & Blaž Janc & Željko Vukelić, 2020. "Change of the Properties of Steel Material of the Roller Cone Bit Due to the Influence of the Drilling Operational Parameters and Rock Properties," Energies, MDPI, vol. 13(22), pages 1-22, November.
    5. Agostinho C. B. Junior & Raphael R. Silva & Giovanna L. R. Leal & Tarsila M. Tertuliano & Rafael P. Alves & Alfredo I. C. Garnica & Fabiola D. S. Curbelo, 2021. "The Influences of NP100 Surfactant and Pine-Oil Concentrations on Filtrate Volume and Filter-Cake Thickness of Microemulsion-Based Drilling Fluids (O/W)," Energies, MDPI, vol. 14(16), pages 1-15, August.
    6. Shuya Chen & Yanping Shi & Xianyu Yang & Kunzhi Xie & Jihua Cai, 2019. "Design and Evaluation of a Surfactant–Mixed Metal Hydroxide-Based Drilling Fluid for Maintaining Wellbore Stability in Coal Measure Strata," Energies, MDPI, vol. 12(10), pages 1-19, May.
    7. Salaheldin Elkatatny, 2018. "Enhancing the Stability of Invert Emulsion Drilling Fluid for Drilling in High-Pressure High-Temperature Conditions," Energies, MDPI, vol. 11(9), pages 1-15, September.
    8. Omid Mosalman Haghighi & Ghasem Zargar & Abbas Khaksar Manshad & Muhammad Ali & Mohammad Ali Takassi & Jagar A. Ali & Alireza Keshavarz, 2020. "Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery," Energies, MDPI, vol. 13(15), pages 1-18, August.
    9. Chen, Yong & Zheng, Zunqing & Lu, Zhiyuan & Wang, Hu & Wang, Changhui & Sun, Xingyu & Xu, Linxun & Yao, Mingfa, 2024. "Machine learning-based screening of fuel properties for SI and CI engines using a hybrid group extraction method," Applied Energy, Elsevier, vol. 366(C).
    10. Hany Gamal & Salaheldin Elkatatny & Salem Basfar & Abdulaziz Al-Majed, 2019. "Effect of pH on Rheological and Filtration Properties of Water-Based Drilling Fluid Based on Bentonite," Sustainability, MDPI, vol. 11(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3399-:d:520203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.