IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3988-d393572.html
   My bibliography  Save this article

Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery

Author

Listed:
  • Omid Mosalman Haghighi

    (Department of Petroleum Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, Iran)

  • Ghasem Zargar

    (Department of Petroleum Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, Iran)

  • Abbas Khaksar Manshad

    (Department of Petroleum Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, Iran)

  • Muhammad Ali

    (School of Engineering, Edith Cowan University, Joondalup 6027, Australia
    Western Australia School of Mines, Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick Perry Avenue, Kensington 6151, Australia)

  • Mohammad Ali Takassi

    (Department of Petroleum Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Abadan, Iran)

  • Jagar A. Ali

    (Department of Petroleum Engineering, Faculty of Engineering, Soran University, Soran 44008, Kurdistan Region, Iraq
    Department of Petroleum Engineering, College of Engineering, Knowledge University, Erbil 44001, Kurdistan Region, Iraq)

  • Alireza Keshavarz

    (School of Engineering, Edith Cowan University, Joondalup 6027, Australia)

Abstract

Production from mature oil reservoirs can be optimized by using the surfactant flooding technique. This can be achieved by reducing oil and water interfacial tension (IFT) and modifying wettability to hydrophilic conditions. In this study, a novel green non-ionic surfactant (dodecanoyl-glucosamine surfactant) was synthesized and used to modify the wettability of carbonate reservoirs to hydrophilic conditions as well as to decrease the IFT of hydrophobic oil–water systems. The synthesized non-ionic surfactant was characterized by Fourier transform infrared spectroscopy (FTIR) and chemical shift nuclear magnetic resonance (HNMR) analyses. Further pH, turbidity, density, and conductivity were investigated to measure the critical micelle concentration (CMC) of surfactant solutions. The result shows that this surfactant alters wettability from 148.93° to 65.54° and IFT from 30 to 14 dynes/cm. Core-flooding results have shown that oil recovery was increased from 40% (by water flooding) to 59% (by surfactant flooding). In addition, it is identified that this novel non-ionic surfactant can be used in CO 2 storage applications due to its ability to alter the hydrophobicity into hydrophilicity of the reservoir rocks.

Suggested Citation

  • Omid Mosalman Haghighi & Ghasem Zargar & Abbas Khaksar Manshad & Muhammad Ali & Mohammad Ali Takassi & Jagar A. Ali & Alireza Keshavarz, 2020. "Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery," Energies, MDPI, vol. 13(15), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3988-:d:393572
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olajire, Abass A., 2014. "Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges," Energy, Elsevier, vol. 77(C), pages 963-982.
    2. Zisis Vryzas & Vassilios C. Kelessidis, 2017. "Nano-Based Drilling Fluids: A Review," Energies, MDPI, vol. 10(4), pages 1-34, April.
    3. Aly A Hamouda & Nikhil Bagalkot, 2019. "Effect of Salts on Interfacial Tension and CO 2 Mass Transfer in Carbonated Water Injection," Energies, MDPI, vol. 12(4), pages 1-17, February.
    4. Vladimir Alvarado & Eduardo Manrique, 2010. "Enhanced Oil Recovery: An Update Review," Energies, MDPI, vol. 3(9), pages 1-47, August.
    5. Muhammad Ali & Husna Hayati Jarni & Adnan Aftab & Abdul Razak Ismail & Noori M. Cata Saady & Muhammad Faraz Sahito & Alireza Keshavarz & Stefan Iglauer & Mohammad Sarmadivaleh, 2020. "Nanomaterial-Based Drilling Fluids for Exploitation of Unconventional Reservoirs: A Review," Energies, MDPI, vol. 13(13), pages 1-30, July.
    6. Xiaofei Sun & Yanyu Zhang & Guangpeng Chen & Zhiyong Gai, 2017. "Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress," Energies, MDPI, vol. 10(3), pages 1-33, March.
    7. Edwin A. Chukwudeme & Aly A. Hamouda, 2009. "Enhanced Oil Recovery (EOR) by Miscible CO 2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils," Energies, MDPI, vol. 2(3), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaturvedi, Krishna Raghav & Narukulla, Ramesh & Amani, Mahmood & Sharma, Tushar, 2021. "Experimental investigations to evaluate surfactant role on absorption capacity of nanofluid for CO2 utilization in sustainable crude mobilization," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huoxin Luan & Zhaohui Zhou & Chongjun Xu & Lei Bai & Xiaoguang Wang & Lu Han & Qun Zhang & Gen Li, 2022. "Study on the Synergistic Effects between Petroleum Sulfonate and a Nonionic–Anionic Surfactant for Enhanced Oil Recovery," Energies, MDPI, vol. 15(3), pages 1-12, February.
    2. Sayed Ameenuddin Irfan & Afza Shafie & Noorhana Yahya & Nooraini Zainuddin, 2019. "Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review," Energies, MDPI, vol. 12(8), pages 1-19, April.
    3. Chang, Yuanhao & Xiao, Senbo & Ma, Rui & Zhang, Zhiliang & He, Jianying, 2022. "Atomistic insight into oil displacement on rough surface by Janus nanoparticles," Energy, Elsevier, vol. 245(C).
    4. Liu, Yu-Long & Li, Yang & Si, Yin-Fang & Fu, Jian & Dong, Hao & Sun, Shan-Shan & Zhang, Fan & She, Yue-Hui & Zhang, Zhi-Quan, 2023. "Synthesis of nanosilver particles mediated by microbial surfactants and its enhancement of crude oil recovery," Energy, Elsevier, vol. 272(C).
    5. Agostinho C. B. Junior & Raphael R. Silva & Giovanna L. R. Leal & Tarsila M. Tertuliano & Rafael P. Alves & Alfredo I. C. Garnica & Fabiola D. S. Curbelo, 2021. "The Influences of NP100 Surfactant and Pine-Oil Concentrations on Filtrate Volume and Filter-Cake Thickness of Microemulsion-Based Drilling Fluids (O/W)," Energies, MDPI, vol. 14(16), pages 1-15, August.
    6. Fasano, Matteo & Morciano, Matteo & Bergamasco, Luca & Chiavazzo, Eliodoro & Zampato, Massimo & Carminati, Stefano & Asinari, Pietro, 2021. "Deep-sea reverse osmosis desalination for energy efficient low salinity enhanced oil recovery," Applied Energy, Elsevier, vol. 304(C).
    7. Druetta, P. & Raffa, P. & Picchioni, F., 2019. "Chemical enhanced oil recovery and the role of chemical product design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Oscar E. Medina & Carol Olmos & Sergio H. Lopera & Farid B. Cortés & Camilo A. Franco, 2019. "Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review," Energies, MDPI, vol. 12(24), pages 1-36, December.
    9. Xiankang Xin & Yiqiang Li & Gaoming Yu & Weiying Wang & Zhongzhi Zhang & Maolin Zhang & Wenli Ke & Debin Kong & Keliu Wu & Zhangxin Chen, 2017. "Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies," Energies, MDPI, vol. 10(11), pages 1-25, October.
    10. Mikhail A. Sheremet & Hakan F. Oztop & Dmitriy V. Gvozdyakov & Mohamed E. Ali, 2018. "Impacts of Heat-Conducting Solid Wall and Heat-Generating Element on Free Convection of Al 2 O 3 /H 2 O Nanofluid in a Cavity with Open Border," Energies, MDPI, vol. 11(12), pages 1-17, December.
    11. Tariq Ali Chandio & Muhammad A. Manan & Khalil Rehman Memon & Ghulam Abbas & Ghazanfer Raza Abbasi, 2021. "Enhanced Oil Recovery by Hydrophilic Silica Nanofluid: Experimental Evaluation of the Impact of Parameters and Mechanisms on Recovery Potential," Energies, MDPI, vol. 14(18), pages 1-19, September.
    12. Samin Raziperchikolaee & Ashwin Pasumarti & Srikanta Mishra, 2020. "The effect of natural fractures on CO2 storage performance and oil recovery from CO2 and WAG injection in an Appalachian basin reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1098-1114, October.
    13. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    14. Jun Pu & Xuejie Qin & Feifei Gou & Wenchao Fang & Fengjie Peng & Runxi Wang & Zhaoli Guo, 2018. "Molecular Modeling of CO 2 and n -Octane in Solubility Process and α -Quartz Nanoslit," Energies, MDPI, vol. 11(11), pages 1-11, November.
    15. Hong He & Jingyu Fu & Baofeng Hou & Fuqing Yuan & Lanlei Guo & Zongyang Li & Qing You, 2018. "Investigation of Injection Strategy of Branched-Preformed Particle Gel/Polymer/Surfactant for Enhanced Oil Recovery after Polymer Flooding in Heterogeneous Reservoirs," Energies, MDPI, vol. 11(8), pages 1-17, July.
    16. Camilo Andrés Guerrero-Martin & Angie Tatiana Ortega-Ramírez & Paula Alejandra Perilla Rodríguez & Shalom Jireth Reyes López & Laura Estefanía Guerrero-Martin & Raúl Salinas-Silva & Stefanny Camacho-G, 2023. "Analysis of Environmental Sustainability through a Weighting Matrix in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    17. Welkenhuysen, Kris & Rupert, Jort & Compernolle, Tine & Ramirez, Andrea & Swennen, Rudy & Piessens, Kris, 2017. "Considering economic and geological uncertainty in the simulation of realistic investment decisions for CO2-EOR projects in the North Sea," Applied Energy, Elsevier, vol. 185(P1), pages 745-761.
    18. Huiying Zhong & Weidong Zhang & Jing Fu & Jun Lu & Hongjun Yin, 2017. "The Performance of Polymer Flooding in Heterogeneous Type II Reservoirs—An Experimental and Field Investigation," Energies, MDPI, vol. 10(4), pages 1-19, April.
    19. Rui Dias & Paulo Alexandre & Nuno Teixeira & Mariana Chambino, 2023. "Clean Energy Stocks: Resilient Safe Havens in the Volatility of Dirty Cryptocurrencies," Energies, MDPI, vol. 16(13), pages 1-24, July.
    20. Adedapo N. Awolayo & Hemanta K. Sarma & Long X. Nghiem, 2018. "Brine-Dependent Recovery Processes in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts," Energies, MDPI, vol. 11(11), pages 1-66, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3988-:d:393572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.