IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4699-d607742.html
   My bibliography  Save this article

A Proposed Guidance for the Economic Assessment of Wave Energy Converters at Early Development Stages

Author

Listed:
  • Amélie Têtu

    (Department of the Built Environment, Aalborg University, 9220 Aalborg, Denmark
    These authors contributed equally to this work.)

  • Julia Fernandez Chozas

    (Julia F. Chozas, Consulting Engineer, 1360 Copenhagen, Denmark
    These authors contributed equally to this work.)

Abstract

Wave energy is one of the most promising renewable energies available with its very large resource. The waves generated by the wind field are steadier than the wind field itself, rendering wave energy more consistent than wind energy. It is also more predictable than wind and solar. Wave energy is making continuous progress towards commercialisation, and thanks to an increasing number of deployments at sea, the sector is increasing the understanding of the costs and economies of these projects. No wave energy converter has been demonstrated to be commercially viable, and it is yet to be proven that wave energy can contribute to the renewable energy mix. In this context, and in order to find an economically viable solution for exploiting wave energy, it is important to assess the economic potential of a particular concept throughout the entire technological development process. At early development stages, this assessment can be challenging and present large uncertainties. Notwithstanding, it is important to perform the economic assessment already at the early stages in order to identify possible bottlenecks or potential improvements or modifications of a concept. This work presents guidance for the economic evaluation of a wave energy concept at an early development stage by setting up the economic frame based on a target LCoE. It involves the understanding of the entry cost to be achieved for a specific target market and evaluating the breakdown of costs based on a detailed technology agnostic database of costs. The guidance is then applied to a new type of wave energy converter, in which the primary coupling with the waves is through hydrodynamic lift forces.

Suggested Citation

  • Amélie Têtu & Julia Fernandez Chozas, 2021. "A Proposed Guidance for the Economic Assessment of Wave Energy Converters at Early Development Stages," Energies, MDPI, vol. 14(15), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4699-:d:607742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramos, V. & Giannini, G. & Calheiros-Cabral, T. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "Legal framework of marine renewable energy: A review for the Atlantic region of Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    3. Beels, Charlotte & Troch, Peter & Kofoed, Jens Peter & Frigaard, Peter & Vindahl Kringelum, Jon & Carsten Kromann, Peter & Heyman Donovan, Martin & De Rouck, Julien & De Backer, Griet, 2011. "A methodology for production and cost assessment of a farm of wave energy converters," Renewable Energy, Elsevier, vol. 36(12), pages 3402-3416.
    4. Kaiser, Mark J. & Snyder, Brian, 2012. "Modeling the decommissioning cost of offshore wind development on the U.S. Outer Continental Shelf," Marine Policy, Elsevier, vol. 36(1), pages 153-164, January.
    5. Austrian Institute of Economic Research, 2006. "Competitiveness Report 2006," WIFO Studies, WIFO, number 28814, August.
    6. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe," Renewable Energy, Elsevier, vol. 50(C), pages 889-900.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joensen, Bárður & Bingham, Harry B., 2024. "Economic feasibility study for wave energy conversion device deployment in Faroese waters," Energy, Elsevier, vol. 295(C).
    2. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    3. Pablo Ruiz-Minguela & Donald R. Noble & Vincenzo Nava & Shona Pennock & Jesus M. Blanco & Henry Jeffrey, 2022. "Estimating Future Costs of Emerging Wave Energy Technologies," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    4. Enrico Giglio & Ermando Petracca & Bruno Paduano & Claudio Moscoloni & Giuseppe Giorgi & Sergej Antonello Sirigu, 2023. "Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottom-Up Approach," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
    5. Yi Zhang & Dapeng Zhang & Haoyu Jiang, 2023. "A Review of Offshore Wind and Wave Installations in Some Areas with an Eye towards Generating Economic Benefits and Offering Commercial Inspiration," Sustainability, MDPI, vol. 15(10), pages 1-32, May.
    6. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    7. Raúl Cascajo & Rafael Molina & Luís Pérez-Rojas, 2022. "Sectoral Analysis of the Fundamental Criteria for the Evaluation of the Viability of Wave Energy Generation Facilities in Ports—Application of the Delphi Methodology," Energies, MDPI, vol. 15(7), pages 1-25, April.
    8. O'Connell, Ross & Kamidelivand, Mitra & Furlong, Rebecca & Guerrini, Marco & Cullinane, Margaret & Murphy, Jimmy, 2024. "An advanced geospatial assessment of the Levelised cost of energy (LCOE) for wave farms in Irish and western UK waters," Renewable Energy, Elsevier, vol. 221(C).
    9. Gao, Qiang & Bechlenberg, Alva & Jayawardhana, Bayu & Ertugrul, Nesimi & Vakis, Antonis I. & Ding, Boyin, 2024. "Techno-economic assessment of offshore wind and hybrid wind–wave farms with energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    2. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    3. Dalton, Gordon & Bardócz, Tamás & Blanch, Mike & Campbell, David & Johnson, Kate & Lawrence, Gareth & Lilas, Theodore & Friis-Madsen, Erik & Neumann, Frank & Nikitas, Nikitakos & Ortega, Saul Torres &, 2019. "Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 338-359.
    4. Guanche, R. & de Andrés, A.D. & Simal, P.D. & Vidal, C. & Losada, I.J., 2014. "Uncertainty analysis of wave energy farms financial indicators," Renewable Energy, Elsevier, vol. 68(C), pages 570-580.
    5. Portillo, J.C.C. & Reis, P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Backward bent-duct buoy or frontward bent-duct buoy? Review, assessment and optimisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 353-368.
    6. Laura Castro-Santos & Dina Silva & A. Rute Bento & Nadia Salvação & C. Guedes Soares, 2018. "Economic Feasibility of Wave Energy Farms in Portugal," Energies, MDPI, vol. 11(11), pages 1-16, November.
    7. de Oliveira, Lucas & Santos, Ivan Felipe Silva dos & Schmidt, Nágila Lucietti & Tiago Filho, Geraldo Lúcio & Camacho, Ramiro Gustavo Ramirez & Barros, Regina Mambeli, 2021. "Economic feasibility study of ocean wave electricity generation in Brazil," Renewable Energy, Elsevier, vol. 178(C), pages 1279-1290.
    8. Nicole A. MATHYS & Jaime DE MELO, 2010. "Trade and Climate Change: The Challenges Ahead," Working Papers P14, FERDI.
    9. David, Paul A. & Shapiro, Joseph S., 2008. "Community-based production of open-source software: What do we know about the developers who participate?," Information Economics and Policy, Elsevier, vol. 20(4), pages 364-398, December.
    10. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    11. Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
    12. Bottasso, Anna & Conti, Maurizio & Ferrari, Claudio & Tei, Alessio, 2014. "Ports and regional development: A spatial analysis on a panel of European regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 44-55.
    13. Irene Fafaliou & Michael Polemis, 2013. "Competitiveness of the Euro Zone Manufacturing: A Panel Data Analysis," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 19(1), pages 45-61, February.
    14. Gauguier, Jean-Jacques, 2009. "L’industrialisation de l’Open Source," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/4388 edited by Toledano, Joëlle.
    15. Carpintero Moreno, Efrain & Stansby, Peter, 2019. "The 6-float wave energy converter M4: Ocean basin tests giving capture width, response and energy yield for several sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 307-318.
    16. He, Zechen & Ning, Dezhi & Gou, Ying & Zhou, Zhimin, 2022. "Wave energy converter optimization based on differential evolution algorithm," Energy, Elsevier, vol. 246(C).
    17. Thomas Cleff & Klaus Rennings, 2011. "Theoretical and Empirical Evidence of Timing-to-Market and Lead Market Strategies for Successful Environmental Innovation," Discussion Papers dp11-01, Department of Economics, Simon Fraser University.
    18. Deepa Chandrasekaran & Gerard J. Tellis, 2008. "Global Takeoff of New Products: Culture, Wealth, or Vanishing Differences?," Marketing Science, INFORMS, vol. 27(5), pages 844-860, 09-10.
    19. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    20. Dula Borozan, 2008. "Regional Competitiveness: Some Conceptual Issues and Policy Implications," Interdisciplinary Management Research, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 4, pages 50-63, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4699-:d:607742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.