IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224006418.html
   My bibliography  Save this article

Economic feasibility study for wave energy conversion device deployment in Faroese waters

Author

Listed:
  • Joensen, Bárður
  • Bingham, Harry B.

Abstract

As the world continues to battle with increasing energy demand along with the serious effects of climate change, there is a need for more reliable renewable energy sources. The objective of the present work is to study the economic feasibility for deployment of wave energy conversion devices in the Faroese coastal region. We analyze eight different wave energy conversion concepts under development at nine different nearshore locations in the Faroese coastal region. The nine different locations are classified into three coastal locations — three on the west coast, three on the east coast and three on the north coast. The eight wave energy conversion devices mostly rely on different working principles, though some of these are similar. Results show that there is quite a significant difference in the performance of the devices from coast to coast. There is also a difference between the different conversion devices as they rely on different principles and the suitability of each device varies from location to location. We also show that the Faroe Islands are a suitable location for wave energy converter deployment compared to other places. Furthermore, results show that the performance of wave energy converters in the Faroe Islands can prove to be a direct competitor to offshore floating wind energy.

Suggested Citation

  • Joensen, Bárður & Bingham, Harry B., 2024. "Economic feasibility study for wave energy conversion device deployment in Faroese waters," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224006418
    DOI: 10.1016/j.energy.2024.130869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siegel, Stefan G., 2019. "Numerical benchmarking study of a Cycloidal Wave Energy Converter," Renewable Energy, Elsevier, vol. 134(C), pages 390-405.
    2. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Margheritini, L. & Vicinanza, D. & Frigaard, P., 2009. "SSG wave energy converter: Design, reliability and hydraulic performance of an innovative overtopping device," Renewable Energy, Elsevier, vol. 34(5), pages 1371-1380.
    4. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    5. Joensen, Bárður & Niclasen, Bárður A. & Bingham, Harry B., 2021. "Wave power assessment in Faroese waters using an oceanic to nearshore scale spectral wave model," Energy, Elsevier, vol. 235(C).
    6. Diego Vicinanza & Lucia Margheritini & Jens Peter Kofoed & Mariano Buccino, 2012. "The SSG Wave Energy Converter: Performance, Status and Recent Developments," Energies, MDPI, vol. 5(2), pages 1-34, January.
    7. Sunny Kumar Poguluri & Il-Hyoung Cho & Yoon Hyeok Bae, 2019. "A Study of the Hydrodynamic Performance of a Pitch-type Wave Energy Converter–Rotor," Energies, MDPI, vol. 12(5), pages 1-16, March.
    8. Laura Castro-Santos & Dina Silva & A. Rute Bento & Nadia Salvação & C. Guedes Soares, 2018. "Economic Feasibility of Wave Energy Farms in Portugal," Energies, MDPI, vol. 11(11), pages 1-16, November.
    9. Amélie Têtu & Julia Fernandez Chozas, 2021. "A Proposed Guidance for the Economic Assessment of Wave Energy Converters at Early Development Stages," Energies, MDPI, vol. 14(15), pages 1-14, August.
    10. Stefano Parmeggiani & Jens Peter Kofoed & Erik Friis-Madsen, 2013. "Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter," Energies, MDPI, vol. 6(4), pages 1-32, April.
    11. de Oliveira, Lucas & Santos, Ivan Felipe Silva dos & Schmidt, Nágila Lucietti & Tiago Filho, Geraldo Lúcio & Camacho, Ramiro Gustavo Ramirez & Barros, Regina Mambeli, 2021. "Economic feasibility study of ocean wave electricity generation in Brazil," Renewable Energy, Elsevier, vol. 178(C), pages 1279-1290.
    12. Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, vol. 13(4), pages 1-19, February.
    13. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    14. Dalton, G.J. & Alcorn, R. & Lewis, T., 2010. "Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America," Renewable Energy, Elsevier, vol. 35(2), pages 443-455.
    15. Kofoed, Jens Peter & Frigaard, Peter & Friis-Madsen, Erik & Sørensen, Hans Chr., 2006. "Prototype testing of the wave energy converter wave dragon," Renewable Energy, Elsevier, vol. 31(2), pages 181-189.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    2. Liu, Zhen & Shi, Hongda & Cui, Ying & Kim, Kilwon, 2017. "Experimental study on overtopping performance of a circular ramp wave energy converter," Renewable Energy, Elsevier, vol. 104(C), pages 163-176.
    3. Liu, Zhen & Zhang, Guoliang, 2024. "Overtopping performance of a multi-level CROWN wave energy convertor: A numerical study," Energy, Elsevier, vol. 294(C).
    4. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
    5. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    6. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    7. David Gallach-Sánchez & Peter Troch & Andreas Kortenhaus, 2018. "A Critical Analysis and Validation of the Accuracy of Wave Overtopping Prediction Formulae for OWECs," Energies, MDPI, vol. 11(1), pages 1-20, January.
    8. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    9. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    10. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.
    11. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    12. Eugen Rusu, 2014. "Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments," Energies, MDPI, vol. 7(6), pages 1-17, June.
    13. Lavidas, George, 2020. "Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters," Energy, Elsevier, vol. 196(C).
    14. Claudio Iuppa & Pasquale Contestabile & Luca Cavallaro & Enrico Foti & Diego Vicinanza, 2016. "Hydraulic Performance of an Innovative Breakwater for Overtopping Wave Energy Conversion," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
    15. Raúl Cascajo & Emilio García & Eduardo Quiles & Antonio Correcher & Francisco Morant, 2019. "Integration of Marine Wave Energy Converters into Seaports: A Case Study in the Port of Valencia," Energies, MDPI, vol. 12(5), pages 1-24, February.
    16. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    17. Choupin, Ophelie & Henriksen, Michael & Tomlinson, Rodger, 2022. "Interrelationship between variables for wave direction-dependent WEC/site-configuration pairs using the CapEx method," Energy, Elsevier, vol. 248(C).
    18. Laura Castro-Santos & Dina Silva & A. Rute Bento & Nadia Salvação & C. Guedes Soares, 2018. "Economic Feasibility of Wave Energy Farms in Portugal," Energies, MDPI, vol. 11(11), pages 1-16, November.
    19. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    20. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224006418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.