IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3149-d182719.html
   My bibliography  Save this article

Economic Feasibility of Wave Energy Farms in Portugal

Author

Listed:
  • Laura Castro-Santos

    (Departamento de Enxeñaría Naval e Industrial, Universidade da Coruña, Escola Politécnica Superior, Esteiro, 15471 Ferrol, Spain)

  • Dina Silva

    (Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • A. Rute Bento

    (Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • Nadia Salvação

    (Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

  • C. Guedes Soares

    (Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)

Abstract

This paper develops a methodology to determine the economic feasibility of implementing offshore wave energy farms on the Portuguese continental coast. This methodology follows several phases: the geographic phase, the energy phase, the economic phase, and the restrictions phase. First, in the geographic phase, the height and the period of the waves, the bathymetry, the distance from the farm to the shore, from farm to shipyard, and from farm to port, are calculated. In the energy phase the energy produced by each wave energy converter is determined, and in the economic phase, the parameters calculated in the previous phases are used as input to find the economic parameters. Finally, in the restrictions phase, a limitation by the bathymetry will be added to the economic maps, whose value will be different depending on the floating offshore wave energy converter (WEC). In this study, three wave energy converters have been considered, Pelamis, AquaBuOY, and Wave Dragon, and several scenarios for electric tariffs have been taken into account. The results obtained indicate what the best WEC is for this study in terms of its levelized cost of energy (LCOE), internal rate of return (IRR), and net present value (NPV), and where the best area is to install wave energy farms.

Suggested Citation

  • Laura Castro-Santos & Dina Silva & A. Rute Bento & Nadia Salvação & C. Guedes Soares, 2018. "Economic Feasibility of Wave Energy Farms in Portugal," Energies, MDPI, vol. 11(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3149-:d:182719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McCabe, A.P. & Bradshaw, A. & Meadowcroft, J.A.C. & Aggidis, G., 2006. "Developments in the design of the PS Frog Mk 5 wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 141-151.
    2. Veigas, M. & López, M. & Iglesias, G., 2014. "Assessing the optimal location for a shoreline wave energy converter," Applied Energy, Elsevier, vol. 132(C), pages 404-411.
    3. Martinelli, Luca & Zanuttigh, Barbara & Kofoed, Jens Peter, 2011. "Selection of design power of wave energy converters based on wave basin experiments," Renewable Energy, Elsevier, vol. 36(11), pages 3124-3132.
    4. Iglesias, G. & López, M. & Carballo, R. & Castro, A. & Fraguela, J.A. & Frigaard, P., 2009. "Wave energy potential in Galicia (NW Spain)," Renewable Energy, Elsevier, vol. 34(11), pages 2323-2333.
    5. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    6. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    7. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    8. Lindroth, Simon & Leijon, Mats, 2011. "Offshore wave power measurements—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4274-4285.
    9. Rusu, Eugen & Guedes Soares, C., 2013. "Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 58(C), pages 34-49.
    10. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe," Renewable Energy, Elsevier, vol. 50(C), pages 889-900.
    11. Elwood, David & Yim, Solomon C. & Prudell, Joe & Stillinger, Chad & von Jouanne, Annette & Brekken, Ted & Brown, Adam & Paasch, Robert, 2010. "Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off," Renewable Energy, Elsevier, vol. 35(2), pages 348-354.
    12. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    13. Dalton, G.J. & Alcorn, R. & Lewis, T., 2010. "Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America," Renewable Energy, Elsevier, vol. 35(2), pages 443-455.
    14. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    15. Silva, Dina & Bento, A. Rute & Martinho, Paulo & Guedes Soares, C., 2015. "High resolution local wave energy modelling in the Iberian Peninsula," Energy, Elsevier, vol. 91(C), pages 1099-1112.
    16. Hertenstein, Julie H. & Mckinnon, Sharon M., 1997. "Solving the puzzle of the cash flow statement," Business Horizons, Elsevier, vol. 40(1), pages 69-76.
    17. Beels, Charlotte & Troch, Peter & Kofoed, Jens Peter & Frigaard, Peter & Vindahl Kringelum, Jon & Carsten Kromann, Peter & Heyman Donovan, Martin & De Rouck, Julien & De Backer, Griet, 2011. "A methodology for production and cost assessment of a farm of wave energy converters," Renewable Energy, Elsevier, vol. 36(12), pages 3402-3416.
    18. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
    19. Castro-Santos, Laura & Filgueira-Vizoso, Almudena & Carral-Couce, Luis & Formoso, José Ángel Fraguela, 2016. "Economic feasibility of floating offshore wind farms," Energy, Elsevier, vol. 112(C), pages 868-882.
    20. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Operational expenditure costs for wave energy projects and impacts on financial returns," Renewable Energy, Elsevier, vol. 50(C), pages 1119-1131.
    21. Kofoed, Jens Peter & Frigaard, Peter & Friis-Madsen, Erik & Sørensen, Hans Chr., 2006. "Prototype testing of the wave energy converter wave dragon," Renewable Energy, Elsevier, vol. 31(2), pages 181-189.
    22. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joensen, Bárður & Bingham, Harry B., 2024. "Economic feasibility study for wave energy conversion device deployment in Faroese waters," Energy, Elsevier, vol. 295(C).
    2. Clemente, D. & Rosa-Santos, P. & Ferradosa, T. & Taveira-Pinto, F., 2023. "Wave energy conversion energizing offshore aquaculture: Prospects along the Portuguese coastline," Renewable Energy, Elsevier, vol. 204(C), pages 347-358.
    3. Choupin, Ophelie & Henriksen, Michael & Tomlinson, Rodger, 2022. "Interrelationship between variables for wave direction-dependent WEC/site-configuration pairs using the CapEx method," Energy, Elsevier, vol. 248(C).
    4. Izabela Godyń & Anna Dubel, 2021. "Evolution of Hydropower Support Schemes in Poland and Their Assessment Using the LCOE Method," Energies, MDPI, vol. 14(24), pages 1-23, December.
    5. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    6. Daniela Pantusa & Antonio Francone & Giuseppe Roberto Tomasicchio, 2020. "Floating Offshore Renewable Energy Farms. A Life-Cycle Cost Analysis at Brindisi, Italy," Energies, MDPI, vol. 13(22), pages 1-22, November.
    7. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    8. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    9. Yi Zhang & Dapeng Zhang & Haoyu Jiang, 2023. "A Review of Offshore Wind and Wave Installations in Some Areas with an Eye towards Generating Economic Benefits and Offering Commercial Inspiration," Sustainability, MDPI, vol. 15(10), pages 1-32, May.
    10. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Influence of Automated Maneuvers on the Economic Feasibility of Tidal Energy Farms," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
    11. Majidi, Ajab Gul & Ramos, Victor & Amarouche, Khalid & Rosa Santos, Paulo & das Neves, Luciana & Taveira-Pinto, Francisco, 2023. "Assessing the impact of wave model calibration in the uncertainty of wave energy estimation," Renewable Energy, Elsevier, vol. 212(C), pages 415-429.
    12. Raúl Cascajo & Emilio García & Eduardo Quiles & Antonio Correcher & Francisco Morant, 2019. "Integration of Marine Wave Energy Converters into Seaports: A Case Study in the Port of Valencia," Energies, MDPI, vol. 12(5), pages 1-24, February.
    13. Luca Martinelli & Matteo Volpato & Chiara Favaretto & Piero Ruol, 2019. "Hydraulic Experiments on a Small-Scale Wave Energy Converter with an Unconventional Dummy Pto," Energies, MDPI, vol. 12(7), pages 1-12, March.
    14. Zbysław Dobrowolski & Grzegorz Drozdowski & Mirela Panait & Simona Andreea Apostu, 2022. "The Weighted Average Cost of Capital and Its Universality in Crisis Times: Evidence from the Energy Sector," Energies, MDPI, vol. 15(18), pages 1-15, September.
    15. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    16. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Increasing the Competitiveness of Tidal Systems by Means of the Improvement of Installation and Maintenance Maneuvers in First Generation Tidal Energy Converters—An Economic Argumentation," Energies, MDPI, vol. 12(13), pages 1-27, June.
    17. Vennell, Ross & Major, Robert & Zyngfogel, Remy & Beamsley, Brett & Smeaton, Malcolm & Scheel, Max & Unwin, Heni, 2020. "Rapid initial assessment of the number of turbines required for large-scale power generation by tidal currents," Renewable Energy, Elsevier, vol. 162(C), pages 1890-1905.
    18. O'Connell, Ross & Kamidelivand, Mitra & Furlong, Rebecca & Guerrini, Marco & Cullinane, Margaret & Murphy, Jimmy, 2024. "An advanced geospatial assessment of the Levelised cost of energy (LCOE) for wave farms in Irish and western UK waters," Renewable Energy, Elsevier, vol. 221(C).
    19. Wilhelm Kuckshinrichs, 2021. "LCOE: A Useful and Valid Indicator—Replica to James Loewen and Adam Szymanski," Energies, MDPI, vol. 14(2), pages 1-8, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    2. Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, vol. 13(4), pages 1-19, February.
    3. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    5. Guillou, Nicolas & Chapalain, Georges, 2018. "Annual and seasonal variabilities in the performances of wave energy converters," Energy, Elsevier, vol. 165(PB), pages 812-823.
    6. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    7. Kushal A. Prasad & Aneesh A. Chand & Nallapaneni Manoj Kumar & Sumesh Narayan & Kabir A. Mamun, 2022. "A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities’ Energy Needs," Sustainability, MDPI, vol. 14(4), pages 1-55, February.
    8. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    9. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    10. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    11. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    12. de Oliveira, Lucas & Santos, Ivan Felipe Silva dos & Schmidt, Nágila Lucietti & Tiago Filho, Geraldo Lúcio & Camacho, Ramiro Gustavo Ramirez & Barros, Regina Mambeli, 2021. "Economic feasibility study of ocean wave electricity generation in Brazil," Renewable Energy, Elsevier, vol. 178(C), pages 1279-1290.
    13. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    15. Bento, A. Rute & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy assessement for Northern Spain from a 33-year hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 322-333.
    16. Lo Re, Carlo & Manno, Giorgio & Basile, Mirko & Ciraolo, Giuseppe, 2022. "The opportunity of using wave energy converters in a Mediterranean hot spot," Renewable Energy, Elsevier, vol. 196(C), pages 1095-1114.
    17. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Co-located wave-wind farms: Economic assessment as a function of layout," Renewable Energy, Elsevier, vol. 83(C), pages 837-849.
    18. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    19. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    20. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3149-:d:182719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.