IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6756-d1125459.html
   My bibliography  Save this article

Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottom-Up Approach

Author

Listed:
  • Enrico Giglio

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
    Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
    Energy Center Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
    These authors contributed equally to this work.)

  • Ermando Petracca

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
    Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
    These authors contributed equally to this work.)

  • Bruno Paduano

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
    Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy)

  • Claudio Moscoloni

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
    STS Class Scuola, Universitaria Superiore IUSS di Pavia, Palazzo del Broletto, Piazza della Vittoria, 15, 27100 Pavia, Italy)

  • Giuseppe Giorgi

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
    Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy)

  • Sergej Antonello Sirigu

    (Marine Offshore Renewable Energy Lab (MOREnergy Lab), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
    Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy)

Abstract

The role of ocean energy is expected to grow rapidly in the coming years, and techno-economic analysis will play a crucial role. Nowadays, despite strong assumptions, the vast majority of studies model costs using a top-down approach (the TdA) that leads to an unrepresentative economic model. WEC developers usually go through the the TdA approach because more detailed cost data are not available at an earlier design stage. At a very advanced design stage, some studies have also proposed techno-economic optimisation based on the bottom-up approach (BuA). This entails that the detailed cost metrics presented in the literature are very specific to the WEC type (hence not applicable to other cases) or unrepresentative. This lack of easily accessible detailed cost functions in the current state of the art leads to ineffective optimisations at an earlier stage of WEC development. In this paper, a BuA for WECs is proposed that can be used for techno-economic optimisation at the early design stage. To achieve this goal, cost functions of most common components in the WEC field are retrieved from the literature, exposed, and critically compared. The large number of components considered allows the results of this work to be applied to a vast pool of WECs. The novelty of the presented cost functions is their parameterization with respect to the technological specifications, which already enables their adoption in the design optimisation phase. With the goal of quantifying the results and critically discuss the differences between the TdA and the BuA, the developed methodology and cost functions are applied to a case study and specifically adopted for the calculation of the capital cost of PeWEC (pendulum wave energy converter). In addition, a hybrid approach (HyA) is presented and discussed as an intermediate approach between the TdA and the BdA. Results are compared in terms of capital expenditure (CapEx) and pie cost distribution: the impact of adopting different cost metrics is discussed, highlighting the role that reliable cost functions can have on early stage technology development. This paper proposes more than 50 cost functions for WEC components. Referring to the case study, it is shown that while the total cost differs only slightly (11%), the pie distribution changes by up to 22%. Mooring system and power take-off are the cost items where the TdA and the HyA differ more from the BuA cost estimate.

Suggested Citation

  • Enrico Giglio & Ermando Petracca & Bruno Paduano & Claudio Moscoloni & Giuseppe Giorgi & Sergej Antonello Sirigu, 2023. "Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottom-Up Approach," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6756-:d:1125459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6756/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6756/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amélie Têtu & Julia Fernandez Chozas, 2021. "A Proposed Guidance for the Economic Assessment of Wave Energy Converters at Early Development Stages," Energies, MDPI, vol. 14(15), pages 1-14, August.
    2. Truong, Truong P. & Hamasaki, Hiroshi, 2021. "Technology substitution in the electricity sector - a top down approach with bottom up characteristics," Energy Economics, Elsevier, vol. 101(C).
    3. Xu, Xinxin & Robertson, Bryson & Buckham, Bradley, 2020. "A techno-economic approach to wave energy resource assessment and development site identification," Applied Energy, Elsevier, vol. 260(C).
    4. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    5. Pablo Ruiz-Minguela & Donald R. Noble & Vincenzo Nava & Shona Pennock & Jesus M. Blanco & Henry Jeffrey, 2022. "Estimating Future Costs of Emerging Wave Energy Technologies," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    6. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Dallman, Ann & Jenne, Dale S. & Neary, Vincent & Driscoll, Frederick & Thresher, Robert & Gunawan, Budi, 2018. "Evaluation of performance metrics for the Wave Energy Prize converters tested at 1/20th scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 79-91.
    8. Laura Castro-Santos & Elson Martins & C. Guedes Soares, 2016. "Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm," Energies, MDPI, vol. 9(5), pages 1-27, April.
    9. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    10. Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
    11. Topper, Mathew B.R. & Nava, Vincenzo & Collin, Adam J. & Bould, David & Ferri, Francesco & Olson, Sterling S. & Dallman, Ann R. & Roberts, Jesse D. & Ruiz-Minguela, Pablo & Jeffrey, Henry F., 2019. "Reducing variability in the cost of energy of ocean energy arrays," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 263-279.
    12. Klinge Jacobsen, Henrik, 1998. "Integrating the bottom-up and top-down approach to energy-economy modelling: the case of Denmark," Energy Economics, Elsevier, vol. 20(4), pages 443-461, September.
    13. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    14. Shona Pennock & Anna Garcia-Teruel & Donald R. Noble & Owain Roberts & Adrian de Andres & Charlotte Cochrane & Henry Jeffrey, 2022. "Deriving Current Cost Requirements from Future Targets: Case Studies for Emerging Offshore Renewable Energy Technologies," Energies, MDPI, vol. 15(5), pages 1-19, February.
    15. Francisco Bañuelos-García & Michael Ring & Edgar Mendoza & Rodolfo Silva, 2021. "A Design Procedure for Anchors of Floating Ocean Current Turbines on Weak Rock," Energies, MDPI, vol. 14(21), pages 1-31, November.
    16. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    17. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Battisti, Beatrice & Giorgi, Giuseppe & Fernandez, Gael Verao, 2024. "Balancing power production and coastal protection: A bi-objective analysis of Wave Energy Converters," Renewable Energy, Elsevier, vol. 220(C).
    2. Senthil Kumar Natarajan & Il Hyoung Cho, 2023. "Cost-Effective Optimization of an Array of Wave Energy Converters in Front of a Vertical Seawall," Energies, MDPI, vol. 17(1), pages 1-21, December.
    3. Giorgi, Giuseppe, 2024. "Embedding parametric resonance in a 2:1 wave energy converter to get a broader bandwidth," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    2. Yi Zhang & Dapeng Zhang & Haoyu Jiang, 2023. "A Review of Offshore Wind and Wave Installations in Some Areas with an Eye towards Generating Economic Benefits and Offering Commercial Inspiration," Sustainability, MDPI, vol. 15(10), pages 1-32, May.
    3. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    4. Laura Castro-Santos & Almudena Filgueira-Vizoso, 2019. "A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    5. Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    6. Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, vol. 13(4), pages 1-19, February.
    7. Pablo Ruiz-Minguela & Donald R. Noble & Vincenzo Nava & Shona Pennock & Jesus M. Blanco & Henry Jeffrey, 2022. "Estimating Future Costs of Emerging Wave Energy Technologies," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    8. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    9. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    10. Omar Shafqat & Elena Malakhtka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    11. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    12. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    13. Ren, Nianxin & Ma, Zhe & Shan, Baohua & Ning, Dezhi & Ou, Jinping, 2020. "Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions," Renewable Energy, Elsevier, vol. 151(C), pages 966-974.
    14. Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    15. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    16. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    18. Tawil, Tony El & Charpentier, Jean Frédéric & Benbouzid, Mohamed, 2018. "Sizing and rough optimization of a hybrid renewable-based farm in a stand-alone marine context," Renewable Energy, Elsevier, vol. 115(C), pages 1134-1143.
    19. Daniela Pantusa & Antonio Francone & Giuseppe Roberto Tomasicchio, 2020. "Floating Offshore Renewable Energy Farms. A Life-Cycle Cost Analysis at Brindisi, Italy," Energies, MDPI, vol. 13(22), pages 1-22, November.
    20. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6756-:d:1125459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.