IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4621-d605004.html
   My bibliography  Save this article

Effect of Injection Timing and Injection Duration of Manifold Injected Fuels in Reactivity Controlled Compression Ignition Engine Operated with Renewable Fuels

Author

Listed:
  • P. A. Harari

    (Department of Mechanical Engineering, S.D.M. College of Engineering and Technology, Dharwad 580002, Karnataka, India)

  • N. R. Banapurmath

    (Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, K.L.E Technological University, Hubballi 580031, Karnataka, India)

  • V. S. Yaliwal

    (Department of Mechanical Engineering, S.D.M. College of Engineering and Technology, Dharwad 580002, Karnataka, India)

  • T. M. Yunus Khan

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Irfan Anjum Badruddin

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Sarfaraz Kamangar

    (Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Teuku Meurah Indra Mahlia

    (Centre for Green Technology, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia)

Abstract

In the current work, an effort is made to study the influence of injection timing (IT) and injection duration (ID) of manifold injected fuels (MIF) in the reactivity controlled compression ignition (RCCI) engine. Compressed natural gas (CNG) and compressed biogas (CBG) are used as the MIF along with diesel and blends of Thevetia Peruviana methyl ester (TPME) are used as the direct injected fuels (DIF). The ITs of the MIF that were studied includes 45° ATDC, 50° ATDC, and 55° ATDC. Also, present study includes impact of various IDs of the MIF such as 3, 6, and 9 ms on RCCI mode of combustion. The complete experimental work is conducted at 75% of rated power. The results show that among the different ITs studied, the D+CNG mixture exhibits higher brake thermal efficiency (BTE), about 29.32% is observed at 50° ATDC IT, which is about 1.77, 3.58, 5.56, 7.51, and 8.54% higher than D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. The highest BTE, about 30.25%, is found for the D+CNG fuel combination at 6 ms ID, which is about 1.69, 3.48, 5.32%, 7.24, and 9.16% higher as compared with the D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. At all ITs and IDs, higher emissions of nitric oxide (NOx) along with lower emissions of smoke, carbon monoxide (CO), and hydrocarbon (HC) are found for D+CNG mixture as related to other fuel mixtures. At all ITs and IDs, D+CNG gives higher In-cylinder pressure (ICP) and heat release rate (HRR) as compared with other fuel combinations.

Suggested Citation

  • P. A. Harari & N. R. Banapurmath & V. S. Yaliwal & T. M. Yunus Khan & Irfan Anjum Badruddin & Sarfaraz Kamangar & Teuku Meurah Indra Mahlia, 2021. "Effect of Injection Timing and Injection Duration of Manifold Injected Fuels in Reactivity Controlled Compression Ignition Engine Operated with Renewable Fuels," Energies, MDPI, vol. 14(15), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4621-:d:605004
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arkadiusz Jamrozik & Wojciech Tutak & Karol Grab-Rogaliński, 2019. "An Experimental Study on the Performance and Emission of the diesel/CNG Dual-Fuel Combustion Mode in a Stationary CI Engine," Energies, MDPI, vol. 12(20), pages 1-15, October.
    2. Jahirul, M.I. & Rasul, M.G. & Brown, R.J. & Senadeera, W. & Hosen, M.A. & Haque, R. & Saha, S.C. & Mahlia, T.M.I., 2021. "Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN)," Renewable Energy, Elsevier, vol. 168(C), pages 632-646.
    3. Ali Solouk & Mahdi Shahbakhti, 2016. "Energy Optimization and Fuel Economy Investigation of a Series Hybrid Electric Vehicle Integrated with Diesel/RCCI Engines," Energies, MDPI, vol. 9(12), pages 1-23, December.
    4. Harari, P.A. & Banapurmath, N.R. & Yaliwal, V.S. & Khan, T.M. Yunus & Soudagar, Manzoore Elahi M. & Sajjan, A.M., 2020. "Experimental studies on performance and emission characteristics of reactivity controlled compression ignition (RCCI) engine operated with gasoline and Thevetia Peruviana biodiesel," Renewable Energy, Elsevier, vol. 160(C), pages 865-875.
    5. Silitonga, A.S. & Masjuki, H.H. & Ong, Hwai Chyuan & Sebayang, A.H. & Dharma, S. & Kusumo, F. & Siswantoro, J. & Milano, Jassinnee & Daud, Khairil & Mahlia, T.M.I. & Chen, Wei-Hsin & Sugiyanto, Bamban, 2018. "Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine," Energy, Elsevier, vol. 159(C), pages 1075-1087.
    6. Marlena Owczuk & Anna Matuszewska & Stanisław Kruczyński & Wojciech Kamela, 2019. "Evaluation of Using Biogas to Supply the Dual Fuel Diesel Engine of an Agricultural Tractor," Energies, MDPI, vol. 12(6), pages 1-12, March.
    7. Navid Kousheshi & Mortaza Yari & Amin Paykani & Ali Saberi Mehr & German F. de la Fuente, 2020. "Effect of Syngas Composition on the Combustion and Emissions Characteristics of a Syngas/Diesel RCCI Engine," Energies, MDPI, vol. 13(1), pages 1-19, January.
    8. Asokan, M.A. & Senthur prabu, S. & Kamesh, Shikhar & Khan, Wasiuddin, 2018. "Performance, combustion and emission characteristics of diesel engine fuelled with papaya and watermelon seed oil bio-diesel/diesel blends," Energy, Elsevier, vol. 145(C), pages 238-245.
    9. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    10. Silitonga, A.S. & Mahlia, T.M.I. & Kusumo, F. & Dharma, S. & Sebayang, A.H. & Sembiring, R.W. & Shamsuddin, A.H., 2019. "Intensification of Reutealis trisperma biodiesel production using infrared radiation: Simulation, optimisation and validation," Renewable Energy, Elsevier, vol. 133(C), pages 520-527.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & Nagaraj R. Banapurmath & Muhammad A. Kalam & C. Ahamed Saleel, 2022. "Effect of Injection Parameters on the Performance of Compression Ignition Engine Powered with Jamun Seed and Cashew Nutshell B20 Biodiesel Blends," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    2. Nihal Mishra & Shubham Mitra & Abhishek Thapliyal & Aniket Mahajan & T. M. Yunus Khan & Sreekanth Manavalla & Rahmath Ulla Baig & Ayub Ahmed Janvekar & Feroskhan M, 2023. "Exploring the Effects of DEE Pilot Injection on a Biogas-Fueled HCCI Engine at Different Injection Locations," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    3. Serdar Halis & Hamit Solmaz & Seyfi Polat & H. Serdar Yücesu, 2023. "Numerical Investigation of a Reactivity-Controlled Compression Ignition Engine Fueled with N-Heptane and Iso-Octane," Sustainability, MDPI, vol. 15(13), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asokan, M.A. & Senthur Prabu, S. & Bade, Pushpa Kiran Kumar & Nekkanti, Venkata Mukesh & Gutta, Sri Sai Gopal, 2019. "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine," Energy, Elsevier, vol. 173(C), pages 883-892.
    2. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Teuku Meurah Indra Riayatsyah & Razali Thaib & Arridina Susan Silitonga & Jassinnee Milano & Abd. Halim Shamsuddin & Abdi Hanra Sebayang & Rahmawaty & Joko Sutrisno & Teuku Meurah Indra Mahlia, 2021. "Biodiesel Production from Reutealis trisperma Oil Using Conventional and Ultrasonication through Esterification and Transesterification," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    4. Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).
    5. Salman Abdu Ahmed & Song Zhou & Yuanqing Zhu & Asfaw Solomon Tsegay & Yoming Feng & Naseem Ahmad & Adil Malik, 2020. "Effects of Pig Manure and Corn Straw Generated Biogas and Methane Enriched Biogas on Performance and Emission Characteristics of Dual Fuel Diesel Engines," Energies, MDPI, vol. 13(4), pages 1-23, February.
    6. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    7. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Irfan Anjum Badruddin, 2021. "Influence of Combustion Chamber Shapes and Nozzle Geometry on Performance, Emission, and Combustion Characteristics of CRDI Engine Powered with Biodiesel Blends," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    8. Paweł Fabiś & Bartosz Flekiewicz, 2021. "Influence of LPG and DME Composition on Spark Ignition Engine Performance," Energies, MDPI, vol. 14(17), pages 1-18, September.
    9. Babatunde Oladipo & Tunde V Ojumu & Lekan M Latinwo & Eriola Betiku, 2020. "Pawpaw ( Carica papaya ) Peel Waste as a Novel Green Heterogeneous Catalyst for Moringa Oil Methyl Esters Synthesis: Process Optimization and Kinetic Study," Energies, MDPI, vol. 13(21), pages 1-25, November.
    10. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    11. Da Wang & Chuanxue Song & Yulong Shao & Shixin Song & Silun Peng & Feng Xiao, 2018. "Optimal Control Strategy for Series Hybrid Electric Vehicles in the Warm-Up Process," Energies, MDPI, vol. 11(5), pages 1-20, April.
    12. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    13. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    14. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    15. Raju, Pradeep & Masimalai, Senthil Kumar & Ganesan, Nataraj & Karthic, S.V., 2020. "Engine’s behavior on hydrogen addition of waste cooking oil fueled light duty diesel engine - A dual fuel approach," Energy, Elsevier, vol. 194(C).
    16. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    17. Alçelik, Necdet & Sarıdemir, Suat & Polat, Fikret & Ağbulut, Ümit, 2024. "Role of hydrogen-enrichment for in-direct diesel engine behaviours fuelled with the diesel-waste biodiesel blends," Energy, Elsevier, vol. 302(C).
    18. Vellaiyan, Suresh, 2020. "Combustion, performance and emission evaluation of a diesel engine fueled with soybean biodiesel and its water blends," Energy, Elsevier, vol. 201(C).
    19. Yuhong Zhao & Ruirui Liu & Zhansheng Liu & Liang Liu & Jingjing Wang & Wenxiang Liu, 2023. "A Review of Macroscopic Carbon Emission Prediction Model Based on Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    20. Thangarasu, Vinoth & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2021. "Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4621-:d:605004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.