IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4258-d594439.html
   My bibliography  Save this article

Research on Blade Design of Lift–Drag-Composite Tidal-Energy Turbine at Low Flow Velocity

Author

Listed:
  • Chuhua Jiang

    (Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China)

  • Xuedao Shu

    (Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China)

  • Junhua Chen

    (School of Mechanical Engineering and Automation, College of Science & Technology, Ningbo University, Cixi 315300, China)

  • Lingjie Bao

    (Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China)

  • Yawen Xu

    (Polytechnic Institute, Zhejiang University, Hangzhou 310015, China)

Abstract

The research on tidal-current energy-capture technology mainly focuses on the conditions of high flow velocity, focusing on the use of differential pressure lift, while the average flow velocity in most sea areas of China is less than 1.5 m/s, especially in the marine aquaculture area, where tidal-current energy is needed to provide green energy locally. Due to the low flow velocity of this type of sea area, it seriously affects the effect of differential pressure lift, which is conducive to exerting the effect of impact resistance. In this regard, the coupling effect of the differential pressure lift and the impact resistance on the blade torque is comprehensively considered, this research puts forward the design method of the lift-–drag-composite thin-plate arc turbine blade. Based on the blade element momentum (BEM) theory and Bernoulli’s principle, the turbine dynamic model was established, and the nonlinear optimization method was used to solve the shape parameters of the turbine blades, and the thin-plate arc and NACA airfoil blade turbines were trial-produced under the same conditions. A model experiment was carried out in the experimental pool, and the Xiangshan sea area in Ningbo, East China Sea was taken as the experimental sea area. The results of the two experiments showed the same trend, indicating that the energy-harvesting performance of the lift–drag-composite blade was significantly better than that of the lift blade under the conditions of low flow velocity and small radius, which verified the correctness of the blade design method, and can promote the research and development of tidal energy under the conditions of low flow velocity and small radius.

Suggested Citation

  • Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Yawen Xu, 2021. "Research on Blade Design of Lift–Drag-Composite Tidal-Energy Turbine at Low Flow Velocity," Energies, MDPI, vol. 14(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4258-:d:594439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    2. Jianjun Yao & Fengshen Li & Junhua Chen & Zheng Yuan & Wangeng Mai, 2019. "Parameter Analysis of Savonius Hydraulic Turbine Considering the Effect of Reducing Flow Velocity," Energies, MDPI, vol. 13(1), pages 1-16, December.
    3. Brian G. Sellar & Gareth Wakelam & Duncan R. J. Sutherland & David M. Ingram & Vengatesan Venugopal, 2018. "Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves," Energies, MDPI, vol. 11(1), pages 1-23, January.
    4. Wei Fan & Canbo Xiao & Peiliang Li & Zhujun Zhang & Tiancheng Lin & Yiwen Pan & Yanan Di & Ying Chen, 2020. "Intelligent Control System of an Ecological Engineering Project for Carbon Sequestration in Coastal Mariculture Environments in China," Sustainability, MDPI, vol. 12(13), pages 1-13, June.
    5. Vaz, Jerson Rogério Pinheiro & Pinho, João Tavares & Mesquita, André Luiz Amarante, 2011. "An extension of BEM method applied to horizontal-axis wind turbine design," Renewable Energy, Elsevier, vol. 36(6), pages 1734-1740.
    6. Hongwei Liu & Yajing Gu & Yong-Gang Lin & Yang-Jian Li & Wei Li & Hongbin Zhou, 2020. "Improved Blade Design for Tidal Current Turbines," Energies, MDPI, vol. 13(10), pages 1-16, May.
    7. Charles Greenwood & Arne Vogler & Vengatesan Venugopal, 2019. "On the Variation of Turbulence in a High-Velocity Tidal Channel," Energies, MDPI, vol. 12(4), pages 1-21, February.
    8. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Li & Junhua Chen & Lingjie Bao & Chuhua Jiang, 2021. "Research on Wave Attenuation Performance of Floating Breakwater," Energies, MDPI, vol. 14(24), pages 1-15, December.
    2. Sylvain S. Guillou & Eric Bibeau, 2023. "Tidal Turbines," Energies, MDPI, vol. 16(7), pages 1-5, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marina Barbarić & Zvonimir Guzović, 2020. "Investigation of the Possibilities to Improve Hydrodynamic Performances of Micro-Hydrokinetic Turbines," Energies, MDPI, vol. 13(17), pages 1-20, September.
    2. Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Hao Li, 2020. "Research on Performance Evaluation of Tidal Energy Turbine under Variable Velocity," Energies, MDPI, vol. 13(23), pages 1-14, November.
    3. Liu, Xiaodong & Chen, Zheng & Si, Yulin & Qian, Peng & Wu, He & Cui, Lin & Zhang, Dahai, 2021. "A review of tidal current energy resource assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2021. "Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites," Renewable Energy, Elsevier, vol. 178(C), pages 1322-1336.
    6. Alyona Naberezhnykh & David Ingram & Ian Ashton & Joel Culina, 2023. "How Applicable Are Turbulence Assumptions Used in the Tidal Energy Industry?," Energies, MDPI, vol. 16(4), pages 1-21, February.
    7. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Remo Cossu & Irene Penesis, 2020. "Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics," Energies, MDPI, vol. 13(20), pages 1-22, October.
    8. Zhang, Yidan & Shek, Jonathan K.H. & Mueller, Markus A., 2023. "Controller design for a tidal turbine array, considering both power and loads aspects," Renewable Energy, Elsevier, vol. 216(C).
    9. Draycott, S. & Sellar, B. & Davey, T. & Noble, D.R. & Venugopal, V. & Ingram, D.M., 2019. "Capture and simulation of the ocean environment for offshore renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 15-29.
    10. Theocharis, Dimitrios & Rodrigues, Vasco Sanchez & Pettit, Stephen & Haider, Jane, 2021. "Feasibility of the Northern Sea Route for seasonal transit navigation: The role of ship speed on ice and alternative fuel types for the oil product tanker market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 259-283.
    11. Fowell, R. & Togneri, M. & Pacheco, A. & Nourrisson, O., 2022. "Use of an environmental proxy to determine turbulence regime surrounding a full-scale tidal turbine deployed within the Fromveur Strait, Brittany, France," Applied Energy, Elsevier, vol. 326(C).
    12. Wang, Y. & Sun, X.J. & Zhu, B. & Zhang, H.J. & Huang, D.G., 2016. "Effect of blade vortex interaction on performance of Darrieus-type cross flow marine current turbine," Renewable Energy, Elsevier, vol. 86(C), pages 316-323.
    13. Roberto Cagliero & Marzia Legnini & Francesco Licciardo, 2021. "Evaluating the New Common Agricultural Policy: Improving the Rules," EuroChoices, The Agricultural Economics Society, vol. 20(3), pages 27-33, December.
    14. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    15. Charles Greenwood & Arne Vogler & Vengatesan Venugopal, 2019. "On the Variation of Turbulence in a High-Velocity Tidal Channel," Energies, MDPI, vol. 12(4), pages 1-21, February.
    16. Olgun Aydin & Cansu Altunbas & Elvan Hayat, 2021. "Using Text Mining Techniques to Understand the Economic Effects of COVID-19 Pandemic," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 4), pages 760-774.
    17. Zeng, Zheng & Zhao, Rongxiang & Yang, Huan & Tang, Shengqing, 2014. "Policies and demonstrations of micro-grids in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 701-718.
    18. Wei Fan & Dongdong Pan & Canbo Xiao & Tiancheng Lin & Yiwen Pan & Ying Chen, 2019. "Experimental Study on the Performance of an Innovative Tide-Induced Device for Artificial Downwelling," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
    19. Ewing, Fraser J. & Thies, Philipp R. & Shek, Jonathan & Ferreira, Claudio Bittencourt, 2020. "Probabilistic failure rate model of a tidal turbine pitch system," Renewable Energy, Elsevier, vol. 160(C), pages 987-997.
    20. Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Cossu, Remo & Penesis, Irene, 2021. "Variability of sediment processes around a tidal farm in a theoretical channel," Renewable Energy, Elsevier, vol. 171(C), pages 606-620.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4258-:d:594439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.