IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5326-d427243.html
   My bibliography  Save this article

Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics

Author

Listed:
  • Christelle Auguste

    (Australian Maritime College, University of Tasmania, Launceston, TAS 7250, Australia)

  • Philip Marsh

    (Australian Maritime College, University of Tasmania, Launceston, TAS 7250, Australia)

  • Jean-Roch Nader

    (Australian Maritime College, University of Tasmania, Launceston, TAS 7250, Australia)

  • Remo Cossu

    (School of Civil Engineering, University of Queensland, St Lucia, QLD 4072, Australia)

  • Irene Penesis

    (Australian Maritime College, University of Tasmania, Launceston, TAS 7250, Australia)

Abstract

The development of tidal energy in Australia is still a challenge with few studies performed on the characterisation of the resource, due to the difficulty to acquire data and uncertainties about the influence of this anthropogenic activity on the marine environment. Changes in flow could lead to alterations in sediment transport and have further influence on the marine habitat. A case study in a promising area, Banks Strait (Australia), was created using high resolution 2D and 3D models validated against in situ data to investigate changes to hydrodynamic conditions with two scenarios of tidal farms (100 and 300 turbines). Comparison between 2D and 3D is performed to find the best compromise between model accuracy and computational time for preliminary assessment. Changes to current speed and bed shear stress over a 35 day period were found to be localised around the tidal farms and did not extent more than 7 km from the farm (300 turbines) for both 2D and 3D. The results showed that for near field and far field, 2D models are sufficient to give a first approximation of the hydrodynamic influence of tidal farm deployment on its environment.

Suggested Citation

  • Christelle Auguste & Philip Marsh & Jean-Roch Nader & Remo Cossu & Irene Penesis, 2020. "Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics," Energies, MDPI, vol. 13(20), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5326-:d:427243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thiébot, Jérôme & Bailly du Bois, Pascal & Guillou, Sylvain, 2015. "Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport – Application to the Alderney Race (Raz Blanchard), France," Renewable Energy, Elsevier, vol. 75(C), pages 356-365.
    2. Coles, D.S. & Blunden, L.S. & Bahaj, A.S., 2017. "Assessment of the energy extraction potential at tidal sites around the Channel Islands," Energy, Elsevier, vol. 124(C), pages 171-186.
    3. Lewis, M. & Neill, S.P. & Robins, P. & Hashemi, M.R. & Ward, S., 2017. "Characteristics of the velocity profile at tidal-stream energy sites," Renewable Energy, Elsevier, vol. 114(PA), pages 258-272.
    4. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    5. Larissa Perez & Remo Cossu & Camille Couzi & Irene Penesis, 2020. "Wave-Turbulence Decomposition Methods Applied to Tidal Energy Site Assessment," Energies, MDPI, vol. 13(5), pages 1-21, March.
    6. Brian G. Sellar & Gareth Wakelam & Duncan R. J. Sutherland & David M. Ingram & Vengatesan Venugopal, 2018. "Characterisation of Tidal Flows at the European Marine Energy Centre in the Absence of Ocean Waves," Energies, MDPI, vol. 11(1), pages 1-23, January.
    7. Haverson, David & Bacon, John & Smith, Helen C.M. & Venugopal, Vengatesan & Xiao, Qing, 2018. "Modelling the hydrodynamic and morphological impacts of a tidal stream development in Ramsey Sound," Renewable Energy, Elsevier, vol. 126(C), pages 876-887.
    8. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J., 2014. "Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes," Renewable Energy, Elsevier, vol. 72(C), pages 311-321.
    9. Thiébot, Jérôme & Guillou, Nicolas & Guillou, Sylvain & Good, Andrew & Lewis, Michael, 2020. "Wake field study of tidal turbines under realistic flow conditions," Renewable Energy, Elsevier, vol. 151(C), pages 1196-1208.
    10. Neill, Simon P. & Jordan, James R. & Couch, Scott J., 2012. "Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks," Renewable Energy, Elsevier, vol. 37(1), pages 387-397.
    11. Neill, Simon P. & Litt, Emmer J. & Couch, Scott J. & Davies, Alan G., 2009. "The impact of tidal stream turbines on large-scale sediment dynamics," Renewable Energy, Elsevier, vol. 34(12), pages 2803-2812.
    12. Ahmadian, Reza & Falconer, Roger A., 2012. "Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output," Renewable Energy, Elsevier, vol. 44(C), pages 318-327.
    13. Martin-Short, R. & Hill, J. & Kramer, S.C. & Avdis, A. & Allison, P.A. & Piggott, M.D., 2015. "Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma," Renewable Energy, Elsevier, vol. 76(C), pages 596-607.
    14. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    15. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2016. "Tidal energy leasing and tidal phasing," Renewable Energy, Elsevier, vol. 85(C), pages 580-587.
    16. Goward Brown, Alice J. & Neill, Simon P. & Lewis, Matthew J., 2017. "Tidal energy extraction in three-dimensional ocean models," Renewable Energy, Elsevier, vol. 114(PA), pages 244-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cossu, Remo & Penesis, Irene & Nader, Jean-Roch & Marsh, Philip & Perez, Larissa & Couzi, Camille & Grinham, Alistair & Osman, Peter, 2021. "Tidal energy site characterisation in a large tidal channel in Banks Strait, Tasmania, Australia," Renewable Energy, Elsevier, vol. 177(C), pages 859-870.
    2. Perez, Larissa & Cossu, Remo & Grinham, Alistair & Penesis, Irene, 2021. "Seasonality of turbulence characteristics and wave-current interaction in two prospective tidal energy sites," Renewable Energy, Elsevier, vol. 178(C), pages 1322-1336.
    3. Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Penesis, Irene & Cossu, Remo, 2022. "Modelling the influence of Tidal Energy Converters on sediment dynamics in Banks Strait, Tasmania," Renewable Energy, Elsevier, vol. 188(C), pages 1105-1119.
    4. Marsh, P. & Penesis, I. & Nader, J.R. & Cossu, R. & Auguste, C. & Osman, P. & Couzi, C., 2021. "Tidal current resource assessment and study of turbine extraction effects in Banks Strait, Australia," Renewable Energy, Elsevier, vol. 180(C), pages 1451-1464.
    5. Marsh, Philip & Penesis, Irene & Nader, Jean-Roch & Cossu, Remo, 2021. "Multi-criteria evaluation of potential Australian tidal energy sites," Renewable Energy, Elsevier, vol. 175(C), pages 453-469.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Penesis, Irene & Cossu, Remo, 2022. "Modelling the influence of Tidal Energy Converters on sediment dynamics in Banks Strait, Tasmania," Renewable Energy, Elsevier, vol. 188(C), pages 1105-1119.
    2. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    3. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    4. Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Cossu, Remo & Penesis, Irene, 2021. "Variability of sediment processes around a tidal farm in a theoretical channel," Renewable Energy, Elsevier, vol. 171(C), pages 606-620.
    5. Musa, Mirko & Hill, Craig & Guala, Michele, 2019. "Interaction between hydrokinetic turbine wakes and sediment dynamics: array performance and geomorphic effects under different siting strategies and sediment transport conditions," Renewable Energy, Elsevier, vol. 138(C), pages 738-753.
    6. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    7. Fairley, I. & Karunarathna, H. & Masters, I., 2018. "The influence of waves on morphodynamic impacts of energy extraction at a tidal stream turbine site in the Pentland Firth," Renewable Energy, Elsevier, vol. 125(C), pages 630-647.
    8. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    9. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    10. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Irene Penesis & Remo Cossu, 2021. "Modelling Morphological Changes and Migration of Large Sand Waves in a Very Energetic Tidal Environment: Banks Strait, Australia," Energies, MDPI, vol. 14(13), pages 1-30, July.
    11. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    12. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    13. Haverson, David & Bacon, John & Smith, Helen C.M. & Venugopal, Vengatesan & Xiao, Qing, 2018. "Modelling the hydrodynamic and morphological impacts of a tidal stream development in Ramsey Sound," Renewable Energy, Elsevier, vol. 126(C), pages 876-887.
    14. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    15. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    16. Guillou, Nicolas & Thiébot, Jérôme & Chapalain, Georges, 2019. "Turbines’ effects on water renewal within a marine tidal stream energy site," Energy, Elsevier, vol. 189(C).
    17. Kresning, Boma & Hashemi, M. Reza & Neill, Simon P. & Green, J. A. Mattias & Xue, Huijie, 2019. "The impacts of tidal energy development and sea-level rise in the Gulf of Maine," Energy, Elsevier, vol. 187(C).
    18. Marco Piano & Peter E. Robins & Alan G. Davies & Simon P. Neill, 2018. "The Influence of Intra-Array Wake Dynamics on Depth-Averaged Kinetic Tidal Turbine Energy Extraction Simulations," Energies, MDPI, vol. 11(10), pages 1-21, October.
    19. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    20. Neill, Simon P. & Vögler, Arne & Goward-Brown, Alice J. & Baston, Susana & Lewis, Matthew J. & Gillibrand, Philip A. & Waldman, Simon & Woolf, David K., 2017. "The wave and tidal resource of Scotland," Renewable Energy, Elsevier, vol. 114(PA), pages 3-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5326-:d:427243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.