IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4235-d593812.html
   My bibliography  Save this article

Digital Twin Concepts with Uncertainty for Nuclear Power Applications

Author

Listed:
  • Brendan Kochunas

    (Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA)

  • Xun Huan

    (Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA)

Abstract

Digital Twins (DTs) are receiving considerable attention from multiple disciplines. Much of the literature at this time is dedicated to the conceptualization of digital twins, and associated enabling technologies and challenges. In this paper, we consider these propositions for the specific application of nuclear power. Our review finds that the current DT concepts are amenable to nuclear power systems, but benefit from some modifications and enhancements. Further, some areas of the existing modeling and simulation infrastructure around nuclear power systems are adaptable to DT development, while more recent efforts in advanced modeling and simulation are less suitable at this time. For nuclear power applications, DT development should rely first on mechanistic model-based methods to leverage the extensive experience and understanding of these systems. Model-free techniques can then be adopted to selectively, and correctively, augment limitations in the model-based approaches. Challenges to the realization of a DT are also discussed, with some being unique to nuclear engineering, however most are broader. A challenging aspect we discuss in detail for DTs is the incorporation of uncertainty quantification (UQ). Forward UQ enables the propagation of uncertainty from the digital representations to predict behavior of the physical asset. Similarly, inverse UQ allows for the incorporation of data from new measurements obtained from the physical asset back into the DT. Optimization under uncertainty facilitates decision support through the formal methods of optimal experimental design and design optimization that maximize information gain, or performance, of the physical asset in an uncertain environment.

Suggested Citation

  • Brendan Kochunas & Xun Huan, 2021. "Digital Twin Concepts with Uncertainty for Nuclear Power Applications," Energies, MDPI, vol. 14(14), pages 1-32, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4235-:d:593812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Elizabeth G. Ryan & Christopher C. Drovandi & James M. McGree & Anthony N. Pettitt, 2016. "A Review of Modern Computational Algorithms for Bayesian Optimal Design," International Statistical Review, International Statistical Institute, vol. 84(1), pages 128-154, April.
    3. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zio, Enrico & Miqueles, Leonardo, 2024. "Digital twins in safety analysis, risk assessment and emergency management," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Molly Ross & T-Ying Lin & Daniel Gould & Sanjoy Das & Hitesh Bindra, 2022. "Projecting the Thermal Response in a HTGR-Type System during Conduction Cooldown Using Graph-Laplacian Based Machine Learning," Energies, MDPI, vol. 15(11), pages 1-14, May.
    3. Harleen Kaur Sandhu & Saran Srikanth Bodda & Abhinav Gupta, 2023. "A Future with Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities," Energies, MDPI, vol. 16(6), pages 1-23, March.
    4. Konstantinos Prantikos & Lefteri H. Tsoukalas & Alexander Heifetz, 2022. "Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin," Energies, MDPI, vol. 15(20), pages 1-22, October.
    5. Raval, Khushi Jatinkumar & Jadav, Nilesh Kumar & Rathod, Tejal & Tanwar, Sudeep & Vimal, Vrince & Yamsani, Nagendar, 2024. "A survey on safeguarding critical infrastructures: Attacks, AI security, and future directions," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    6. Lorenzo Malerba & Abderrahim Al Mazouzi & Marjorie Bertolus & Marco Cologna & Pål Efsing & Adrian Jianu & Petri Kinnunen & Karl-Fredrik Nilsson & Madalina Rabung & Mariano Tarantino, 2022. "Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations," Energies, MDPI, vol. 15(5), pages 1-48, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel A Paulson & Marc Martin-Casas & Ali Mesbah, 2019. "Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
    2. Jung, Yongsu & Lee, Ikjin, 2021. "Optimal design of experiments for optimization-based model calibration using Fisher information matrix," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Chen Wang & Xu Wu & Ziyu Xie & Tomasz Kozlowski, 2023. "Scalable Inverse Uncertainty Quantification by Hierarchical Bayesian Modeling and Variational Inference," Energies, MDPI, vol. 16(22), pages 1-23, November.
    4. Qin, Zhiyuan & Naser, M.Z., 2023. "Machine learning and model driven bayesian uncertainty quantification in suspended nonstructural systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    7. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    8. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    9. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    10. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    11. Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    13. Xing Qin & Shuangge Ma & Mengyun Wu, 2023. "Two‐level Bayesian interaction analysis for survival data incorporating pathway information," Biometrics, The International Biometric Society, vol. 79(3), pages 1761-1774, September.
    14. Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.
    15. Liu, Jie & Ye, Zifeng & Chen, Kun & Zhang, Panpan, 2024. "Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    16. Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 13/19, Monash University, Department of Econometrics and Business Statistics.
    17. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    18. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    19. David Breitenmoser & Francesco Cerutti & Gernot Butterweck & Malgorzata Magdalena Kasprzak & Sabine Mayer, 2023. "Emulator-based Bayesian inference on non-proportional scintillation models by compton-edge probing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4235-:d:593812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.