Scalable Inverse Uncertainty Quantification by Hierarchical Bayesian Modeling and Variational Inference
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.
- Chen, Suiyao & Lu, Lu & Xiang, Yisha & Lu, Qing & Li, Mingyang, 2018. "A data heterogeneity modeling and quantification approach for field pre-assessment of chloride-induced corrosion in aging infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 123-135.
- Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
- Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 620(7972), pages 47-60, August.
- Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Publisher Correction: Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 621(7978), pages 33-33, September.
- Laura Marie Helleckes & Michael Osthege & Wolfgang Wiechert & Eric von Lieres & Marco Oldiges, 2022. "Bayesian calibration, process modeling and uncertainty quantification in biotechnology," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-47, March.
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Jae-Hyeon Bae & Kyoungsik Chang & Gong-Hee Lee & Byeong-Cheon Kim, 2022. "Bayesian Inference of Cavitation Model Coefficients and Uncertainty Quantification of a Venturi Flow Simulation," Energies, MDPI, vol. 15(12), pages 1-18, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
- Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
- Koehler, Maximilian & Sauermann, Henry, 2024. "Algorithmic management in scientific research," Research Policy, Elsevier, vol. 53(4).
- Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2024.
"AI as a new emerging technological paradigm: evidence from global patenting,"
DISCE - Quaderni del Dipartimento di Politica Economica
dipe0038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
- Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2024. "AI as a new emerging technological paradigm: evidence from global patenting," GLO Discussion Paper Series 1467, Global Labor Organization (GLO).
- Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2024. "AI as a new emerging technological paradigm: evidence from global patenting," Working Papers of Department of Management, Strategy and Innovation, Leuven 746877, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
- Anil R. Doshi & Oliver P. Hauser, 2023. "Generative artificial intelligence enhances creativity but reduces the diversity of novel content," Papers 2312.00506, arXiv.org, revised Mar 2024.
- Naudé, Wim, 2024. "What They Don't Teach You about Artificial Intelligence at Business School: Stagnation, Oil, and War," IZA Discussion Papers 17306, Institute of Labor Economics (IZA).
- Mohseni, Morteza, 2023. "Deep learning in bifurcations of particle trajectories," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
- Brendan Kochunas & Xun Huan, 2021. "Digital Twin Concepts with Uncertainty for Nuclear Power Applications," Energies, MDPI, vol. 14(14), pages 1-32, July.
- Sani I. Abba & Mohamed A. Yassin & Auwalu Saleh Mubarak & Syed Muzzamil Hussain Shah & Jamilu Usman & Atheer Y. Oudah & Sujay Raghavendra Naganna & Isam H. Aljundi, 2023. "Drinking Water Resources Suitability Assessment Based on Pollution Index of Groundwater Using Improved Explainable Artificial Intelligence," Sustainability, MDPI, vol. 15(21), pages 1-21, November.
- Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial Intelligence and the Transformation of Higher Education Institutions: A Systems Approach," Sustainability, MDPI, vol. 16(14), pages 1-22, July.
- Francesco Di Maio & Nicola Pedroni & Barnabás Tóth & Luciano Burgazzi & Enrico Zio, 2021. "Reliability Assessment of Passive Safety Systems for Nuclear Energy Applications: State-of-the-Art and Open Issues," Energies, MDPI, vol. 14(15), pages 1-17, August.
- He, Hongwen & Su, Qicong & Huang, Ruchen & Niu, Zegong, 2024. "Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm," Energy, Elsevier, vol. 294(C).
- Van Khanh Pham & Duc Minh Le, 2024. "Impact of Artificial Intelligence on Environmental Quality through Technical Change: A Free Dynamic Equilibrium Approach," Papers 2410.06501, arXiv.org.
- Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2024. "Is Artificial Intelligence Generating a New Paradigm? Evidence from the Emerging Phase," IZA Discussion Papers 17183, Institute of Labor Economics (IZA).
- Stefano Bianchini & Moritz Muller & Pierre Pelletier, 2023. "Drivers and Barriers of AI Adoption and Use in Scientific Research," Papers 2312.09843, arXiv.org, revised Feb 2024.
- Nicoleta Mihaela Doran & Gabriela Badareu & Marius Dalian Doran & Maria Enescu & Anamaria Liliana Staicu & Mariana Niculescu, 2024. "Greening Automation: Policy Recommendations for Sustainable Development in AI-Driven Industries," Sustainability, MDPI, vol. 16(12), pages 1-17, June.
- Almeida, Derick & Naudé, Wim & Sequeira, Tiago Neves, 2024. "Artificial Intelligence and the Discovery of New Ideas: Is an Economic Growth Explosion Imminent?," IZA Discussion Papers 16766, Institute of Labor Economics (IZA).
- Wenhao Wan & Yongzhong Tian & Jinglian Tian & Chengxi Yuan & Yan Cao & Kangning Liu, 2024. "Research Progress in Spatiotemporal Dynamic Simulation of LUCC," Sustainability, MDPI, vol. 16(18), pages 1-18, September.
- Qin, Zhiyuan & Naser, M.Z., 2023. "Machine learning and model driven bayesian uncertainty quantification in suspended nonstructural systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Singh, Kuldeep & Chatterjee, Sheshadri & Mariani, Marcello, 2024. "Applications of generative AI and future organizational performance: The mediating role of explorative and exploitative innovation and the moderating role of ethical dilemmas and environmental dynamis," Technovation, Elsevier, vol. 133(C).
More about this item
Keywords
inverse uncertainty quantification; hierarchical Bayesian; variational inference; nuclear thermal-hydraulics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7664-:d:1283648. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.