Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1007308
Download full text from publisher
References listed on IDEAS
- Markus W. Covert & Eric M. Knight & Jennifer L. Reed & Markus J. Herrgard & Bernhard O. Palsson, 2004. "Integrating high-throughput and computational data elucidates bacterial networks," Nature, Nature, vol. 429(6987), pages 92-96, May.
- Elizabeth G. Ryan & Christopher C. Drovandi & James M. McGree & Anthony N. Pettitt, 2016. "A Review of Modern Computational Algorithms for Bayesian Optimal Design," International Statistical Review, International Statistical Institute, vol. 84(1), pages 128-154, April.
- Nicolas Chopin, 2002.
"A sequential particle filter method for static models,"
Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
- Nicolas Chopin, 2000. "A Sequential Particle Filter Method for Static Models," Working Papers 2000-45, Center for Research in Economics and Statistics.
- Marissa Renardy & Tau-Mu Yi & Dongbin Xiu & Ching-Shan Chou, 2018. "Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.
- Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
- Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Brendan Kochunas & Xun Huan, 2021. "Digital Twin Concepts with Uncertainty for Nuclear Power Applications," Energies, MDPI, vol. 14(14), pages 1-32, July.
- McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
- Jung, Yongsu & Lee, Ikjin, 2021. "Optimal design of experiments for optimization-based model calibration using Fisher information matrix," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Mevin Hooten & Christopher Wikle & Michael Schwob, 2020. "Statistical Implementations of Agent‐Based Demographic Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 441-461, August.
- Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
- Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
- Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
- Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019.
"Uncertainty quantification and global sensitivity analysis for economic models,"
Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
- Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2017. "Uncertainty Quantification and Global Sensitivity Analysis for Economic Models," CER-ETH Economics working paper series 17/265, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
- James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
- Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
- Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
- Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
- Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
- Mariolis Theodore & Konstantakis Konstantinos N. & Michaelides Panayotis G. & Tsionas Efthymios G., 2019.
"A non-linear Keynesian Goodwin-type endogenous model of the cycle: Bayesian evidence for the USA,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(1), pages 1-16, February.
- Mariolis, Theodore & Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Tsionas, Efthymios G., 2019. "A non-linear Keynesian Goodwin-type endogenous model of the cycle: Bayesian evidence for the USA," LSE Research Online Documents on Economics 100229, London School of Economics and Political Science, LSE Library.
- Edward Boone & Jan Hannig & Ryad Ghanam & Sujit Ghosh & Fabrizio Ruggeri & Serge Prudhomme, 2022. "Model Validation of a Single Degree-of-Freedom Oscillator: A Case Study," Stats, MDPI, vol. 5(4), pages 1-17, November.
- Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
- Pan-Jun Kim & Nathan D Price, 2011. "Genetic Co-Occurrence Network across Sequenced Microbes," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-9, December.
- Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018.
"Monte Carlo Confidence Sets for Identified Sets,"
Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
- Xiaohong Chen & Timothy Christensen & Elie Tamer, 2016. "Monte Carlo Confidence sets for Identified Sets," Cowles Foundation Discussion Papers 2037R2, Cowles Foundation for Research in Economics, Yale University, revised Sep 2017.
- Xiaohong Chen & Timothy Christensen & Elie Tamer, 2016. "Monte Carlo Confidence Sets for Identified Sets," Papers 1605.00499, arXiv.org, revised Sep 2017.
- Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2017. "Monte Carlo confidence sets for identified sets," CeMMAP working papers CWP43/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Campbell, Katherine, 2006. "Statistical calibration of computer simulations," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1358-1363.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2022.
"Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(6), pages 1637-1671, September.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2018. "Estimating a nonlinear new Keynesian model with the zero lower bound for Japan," CAMA Working Papers 2018-37, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2020. "Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan," Working Papers e154, Tokyo Center for Economic Research.
- Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2018. "Estimating a Nonlinear New Keynesian Model with a Zero Lower Bound for Japan," Working Papers e120, Tokyo Center for Economic Research.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007308. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.