A Future with Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Piotr F. Borowski, 2021. "Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector," Energies, MDPI, vol. 14(7), pages 1-20, March.
- Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Brendan Kochunas & Xun Huan, 2021. "Digital Twin Concepts with Uncertainty for Nuclear Power Applications," Energies, MDPI, vol. 14(14), pages 1-32, July.
- Konstantinos Prantikos & Lefteri H. Tsoukalas & Alexander Heifetz, 2022. "Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin," Energies, MDPI, vol. 15(20), pages 1-22, October.
- Antonello, Federico & Buongiorno, Jacopo & Zio, Enrico, 2022. "A methodology to perform dynamic risk assessment using system theory and modeling and simulation: Application to nuclear batteries," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Jianhui Wu & Jingen Chen & Chunyan Zou & Xiaoxiao Li, 2022. "Accident Modeling and Analysis of Nuclear Reactors," Energies, MDPI, vol. 15(16), pages 1-3, August.
- Lorenzo Malerba & Abderrahim Al Mazouzi & Marjorie Bertolus & Marco Cologna & Pål Efsing & Adrian Jianu & Petri Kinnunen & Karl-Fredrik Nilsson & Madalina Rabung & Mariano Tarantino, 2022. "Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations," Energies, MDPI, vol. 15(5), pages 1-48, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhiqiang Peng & Jichong Lei & Zining Ni & Tao Yu & Jinsen Xie & Jun Hong & Hong Hu, 2024. "Research on Data-Driven Methods for Solving High-Dimensional Neutron Transport Equations," Energies, MDPI, vol. 17(16), pages 1-11, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
- Long Xue & Qianyu Zhang & Xuemang Zhang & Chengyu Li, 2022. "Can Digital Transformation Promote Green Technology Innovation?," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
- Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
- Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
- Jun Liu & Yu Qian & Huihong Chang & Jeffrey Yi-Lin Forrest, 2022. "The Impact of Technology Innovation on Enterprise Capacity Utilization—Evidence from China’s Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
- Ahmed Al-Ajmi & Yingzhao Wang & Siniša Djurović, 2021. "Wind Turbine Generator Controller Signals Supervised Machine Learning for Shaft Misalignment Fault Detection: A Doubly Fed Induction Generator Practical Case Study," Energies, MDPI, vol. 14(6), pages 1-15, March.
- Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
- Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
- Raval, Khushi Jatinkumar & Jadav, Nilesh Kumar & Rathod, Tejal & Tanwar, Sudeep & Vimal, Vrince & Yamsani, Nagendar, 2024. "A survey on safeguarding critical infrastructures: Attacks, AI security, and future directions," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
- Ning, Jiajun & Xiong, Lixin, 2024. "Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model," Energy, Elsevier, vol. 288(C).
- Meng, Debiao & Yang, Shiyuan & Jesus, Abílio M.P. de & Zhu, Shun-Peng, 2023. "A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower," Renewable Energy, Elsevier, vol. 203(C), pages 407-420.
- Pei Zhang & Peiran Chen & Fan Xiao & Yong Sun & Shuyan Ma & Ziwei Zhao, 2022. "The Impact of Information Infrastructure on Air Pollution: Empirical Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
- Assem Urekeshova & Zhibek Rakhmetulina & Igor Dubina & Sergey Evgenievich Barykin & Angela Bahauovna Mottaeva & Shakizada Uteulievna Niyazbekova, 2023. "The Impact of Digital Finance on Clean Energy and Green Bonds through the Dynamics of Spillover," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 441-452, March.
- Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
- Laura Schröder & Nikolay Krasimirov Dimitrov & David Robert Verelst & John Aasted Sørensen, 2022. "Using Transfer Learning to Build Physics-Informed Machine Learning Models for Improved Wind Farm Monitoring," Energies, MDPI, vol. 15(2), pages 1-21, January.
- Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
- Krzysztof Bartczak & Stanisław Łobejko, 2022. "The Implementation Environment for a Digital Technology Platform of Renewable Energy Sources," Energies, MDPI, vol. 15(16), pages 1-16, August.
- Hedan Ma & Xinliang Jia & Xin Wang, 2022. "Digital Transformation, Ambidextrous Innovation and Enterprise Value: Empirical Analysis Based on Listed Chinese Manufacturing Companies," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
- Jakov Batelić & Karlo Griparić & Dario Matika, 2021. "Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets," Energies, MDPI, vol. 14(18), pages 1-14, September.
More about this item
Keywords
condition assessment; artificial intelligence; deep learning; damage detection; signal processing; data management; nuclear piping; concrete; advanced reactors; digital twin;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2628-:d:1093827. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.