IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4088-d589732.html
   My bibliography  Save this article

Modeling and Measurements of Properties of Coupled Inductors

Author

Listed:
  • Kalina Detka

    (Department of Marine Electronics, Faculty of Electrical Engineering, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland)

  • Krzysztof Górecki

    (Department of Marine Electronics, Faculty of Electrical Engineering, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland)

  • Piotr Grzejszczak

    (Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland)

  • Roman Barlik

    (Institute of Control and Industrial Electronics, Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland)

Abstract

This paper proposes a model of a coupled inductor which takes into account the influence of frequency, temperature, and a constant component, I DC , of currents in the windings on the parameters of the considered element. A description of the model and methods of measuring parameters of the inductor using an impedance analyzer and a chamber for thermal measurements is given. The obtained results of measurements are compared with the results of calculations proving a satisfactory match.

Suggested Citation

  • Kalina Detka & Krzysztof Górecki & Piotr Grzejszczak & Roman Barlik, 2021. "Modeling and Measurements of Properties of Coupled Inductors," Energies, MDPI, vol. 14(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4088-:d:589732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristian Pesce & Javier Riedemann & Ruben Pena & Werner Jara & Camilo Maury & Rodrigo Villalobos, 2019. "A Modified Step-Up DC-DC Flyback Converter with Active Snubber for Improved Efficiency," Energies, MDPI, vol. 12(11), pages 1-17, May.
    2. Krzysztof Górecki & Kalina Detka, 2019. "Influence of Power Losses in the Inductor Core on Characteristics of Selected DC–DC Converters," Energies, MDPI, vol. 12(10), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Regelii Suassuna de Andrade Ferreira & Patrick Picher & Fethi Meghnefi & Issouf Fofana & Hassan Ezzaidi & Christophe Volat & Vahid Behjat, 2023. "Reproducing Transformers’ Frequency Response from Finite Element Method (FEM) Simulation and Parameters Optimization," Energies, MDPI, vol. 16(11), pages 1-14, May.
    2. Krzysztof Górecki & Kalina Detka, 2023. "SPICE-Aided Models of Magnetic Elements—A Critical Review," Energies, MDPI, vol. 16(18), pages 1-27, September.
    3. Fabio Corti & Alberto Reatti & Gabriele Maria Lozito & Ermanno Cardelli & Antonino Laudani, 2021. "Influence of Non-Linearity in Losses Estimation of Magnetic Components for DC-DC Converters," Energies, MDPI, vol. 14(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roman Gozdur & Piotr Gębara & Krzysztof Chwastek, 2020. "A Study of Temperature-Dependent Hysteresis Curves for a Magnetocaloric Composite Based on La(Fe, Mn, Si) 13 -H Type Alloys," Energies, MDPI, vol. 13(6), pages 1-15, March.
    2. Daniele Scirè & Gianpaolo Vitale & Marco Ventimiglia & Giuseppe Lullo, 2021. "Non-Linear Inductors Characterization in Real Operating Conditions for Power Density Optimization in SMPS," Energies, MDPI, vol. 14(13), pages 1-19, June.
    3. Joanna Patrzyk & Damian Bisewski & Janusz Zarębski, 2020. "Electrothermal Model of SiC Power BJT," Energies, MDPI, vol. 13(10), pages 1-9, May.
    4. Lijin Kunjuramakurup & Sheik Mohammed Sulthan & Muhammed Shanir Ponparakkal & Veena Raj & Mathew Sathyajith, 2023. "A High-Power Solar PV-fed TISO DC-DC Converter for Electric Vehicle Charging Applications," Energies, MDPI, vol. 16(5), pages 1-22, February.
    5. Kalina Detka & Krzysztof Górecki, 2020. "Influence of the Size and Shape of Magnetic Core on Thermal Parameters of the Inductor," Energies, MDPI, vol. 13(15), pages 1-20, July.
    6. Mostafa Bakkar & Ahmed Aboelhassan & Mostafa Abdelgeliel & Michael Galea, 2021. "PV Systems Control Using Fuzzy Logic Controller Employing Dynamic Safety Margin under Normal and Partial Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4088-:d:589732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.