IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1991-d233920.html
   My bibliography  Save this article

Influence of Power Losses in the Inductor Core on Characteristics of Selected DC–DC Converters

Author

Listed:
  • Krzysztof Górecki

    (Department of Marine Electronics, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland)

  • Kalina Detka

    (Department of Marine Electronics, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland)

Abstract

The paper presents the results of a computer simulation illustrating the influence of power losses in the core of an inductor based on the characteristics of buck and boost converters. In the computations, the authors’ model of power losses in the core is used. Correctness of this model is verified experimentally for three different magnetic materials. Computations are performed with the use of this model and the Excel software for inductors including cores made of ferrite, powdered iron, and nanocrystalline material in a wide range of load resistance, as well as input voltage of both the considered converters operating at different values of switching frequency. The obtained computation results show that power losses in the inductor core and watt-hour efficiency of converters strongly depend on the material used to make this core, in addition to the input voltage and parameters of the control signal and load resistance of the considered converters. The obtained results of watt-hour efficiency of the considered direct current (DC)–DC converters show that it changes up to 30 times in the considered ranges of the mentioned factors. In turn, in the same operating conditions, values of power losses in the considered cores change from a fraction of a watt to tens of watts. The paper also considers the issue of which material should be used to construct the inductor core in order to obtain the highest value of watt-hour efficiency at selected operation conditions of the considered converters.

Suggested Citation

  • Krzysztof Górecki & Kalina Detka, 2019. "Influence of Power Losses in the Inductor Core on Characteristics of Selected DC–DC Converters," Energies, MDPI, vol. 12(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1991-:d:233920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1991/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin, Peng & Li, Yang & Li, Guoqing & Chen, Zhe & Zhai, Xiaojuan, 2017. "Optimized hierarchical power oscillations control for distributed generation under unbalanced conditions," Applied Energy, Elsevier, vol. 194(C), pages 343-352.
    2. Yanying Gao & Hongchen Liu & Jian Ai, 2018. "Novel High Step-Up DC–DC Converter with Three-Winding-Coupled-Inductors and Its Derivatives for a Distributed Generation System," Energies, MDPI, vol. 11(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalina Detka & Krzysztof Górecki & Piotr Grzejszczak & Roman Barlik, 2021. "Modeling and Measurements of Properties of Coupled Inductors," Energies, MDPI, vol. 14(14), pages 1-17, July.
    2. Lijin Kunjuramakurup & Sheik Mohammed Sulthan & Muhammed Shanir Ponparakkal & Veena Raj & Mathew Sathyajith, 2023. "A High-Power Solar PV-fed TISO DC-DC Converter for Electric Vehicle Charging Applications," Energies, MDPI, vol. 16(5), pages 1-22, February.
    3. Daniele Scirè & Gianpaolo Vitale & Marco Ventimiglia & Giuseppe Lullo, 2021. "Non-Linear Inductors Characterization in Real Operating Conditions for Power Density Optimization in SMPS," Energies, MDPI, vol. 14(13), pages 1-19, June.
    4. Kalina Detka & Krzysztof Górecki, 2020. "Influence of the Size and Shape of Magnetic Core on Thermal Parameters of the Inductor," Energies, MDPI, vol. 13(15), pages 1-20, July.
    5. Roman Gozdur & Piotr Gębara & Krzysztof Chwastek, 2020. "A Study of Temperature-Dependent Hysteresis Curves for a Magnetocaloric Composite Based on La(Fe, Mn, Si) 13 -H Type Alloys," Energies, MDPI, vol. 13(6), pages 1-15, March.
    6. Joanna Patrzyk & Damian Bisewski & Janusz Zarębski, 2020. "Electrothermal Model of SiC Power BJT," Energies, MDPI, vol. 13(10), pages 1-9, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aline V. C. Pereira & Marcelo C. Cavalcanti & Gustavo M. Azevedo & Fabrício Bradaschia & Rafael C. Neto & Márcio Rodrigo Santos de Carvalho, 2021. "A Novel Single-Switch High Step-Up DC–DC Converter with Three-Winding Coupled Inductor," Energies, MDPI, vol. 14(19), pages 1-17, October.
    2. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    3. David J. Rincon & Maria A. Mantilla & Juan M. Rey & Miguel Garnica & Damien Guilbert, 2023. "An Overview of Flexible Current Control Strategies Applied to LVRT Capability for Grid-Connected Inverters," Energies, MDPI, vol. 16(3), pages 1-20, January.
    4. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    5. Fermín Barrero-González & Victor Fernão Pires & José L. Sousa & João F. Martins & María Isabel Milanés-Montero & Eva González-Romera & Enrique Romero-Cadaval, 2019. "Photovoltaic Power Converter Management in Unbalanced Low Voltage Networks with Ancillary Services Support," Energies, MDPI, vol. 12(6), pages 1-16, March.
    6. Yajing Gao & Wenhai Yang & Jing Zhu & Jiafeng Ren & Peng Li, 2017. "Evaluating the Effect of Distributed Generation on Power Supply Capacity in Active Distribution System Based on Sensitivity Analysis," Energies, MDPI, vol. 10(10), pages 1-14, September.
    7. Evangelos E. Pompodakis & Georgios I. Orfanoudakis & Katsigiannis Yiannis & Emmanuel S. Karapidakis, 2024. "Robust Secondary Controller for Islanded Microgrids with Unexpected Electrical Partitions under Fault Conditions," Energies, MDPI, vol. 17(15), pages 1-19, July.
    8. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Yu-Hua Chen, 2020. "Interleaved High Step-Up DC–DC Converter with Voltage-Lift and Voltage-Stack Techniques for Photovoltaic Systems," Energies, MDPI, vol. 13(10), pages 1-20, May.
    9. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & Yuan, Haiwen & He, Benlin & Tang, Qunwei, 2018. "Film-type rain energy converters from conductive polymer/PtCo hybrids," Applied Energy, Elsevier, vol. 218(C), pages 317-324.
    10. Sang-Jae Choi & Sung-Hun Lim, 2020. "Fluctuation Suppression of DC-Link Voltage Using Control of Converters Connected with DC Distributed Generation," Energies, MDPI, vol. 13(21), pages 1-18, November.
    11. Li, Yang & Feng, Bo & Wang, Bin & Sun, Shuchao, 2022. "Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach," Energy, Elsevier, vol. 245(C).
    12. Catalin Petrea Ion & Ioan Serban, 2019. "Seamless Integration of an Autonomous Induction Generator System into an Inverter-Based Microgrid," Energies, MDPI, vol. 12(4), pages 1-18, February.
    13. Makrygiorgou, Despoina I. & Alexandridis, Antonio T., 2018. "Distributed stabilizing modular control for stand-alone microgrids," Applied Energy, Elsevier, vol. 210(C), pages 925-935.
    14. Henan Dong & Shun Yuan & Zijiao Han & Zhiyuan Cai & Guangdong Jia & Yangyang Ge, 2018. "A Comprehensive Strategy for Accurate Reactive Power Distribution, Stability Improvement, and Harmonic Suppression of Multi-Inverter-Based Micro-Grid," Energies, MDPI, vol. 11(4), pages 1-16, March.
    15. Mauricio Dalla Vecchia & Giel Van den Broeck & Simon Ravyts & Johan Driesen, 2019. "Novel Step-Down DC–DC Converters Based on the Inductor–Diode and Inductor–Capacitor–Diode Structures in a Two-Stage Buck Converter," Energies, MDPI, vol. 12(6), pages 1-22, March.
    16. Wu, Ying & Wu, Yanpeng & Cimen, Halil & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading," Applied Energy, Elsevier, vol. 314(C).
    17. Sang-Jae Choi & Sung-Hun Lim, 2019. "Enhancement on the Fault Ride through Capability of Power Distribution Systems Linked by Distributed Generation due to the Impedance of Superconducting Fault Current Limiters," Energies, MDPI, vol. 12(24), pages 1-18, December.
    18. Mbungu, Nsilulu T. & Ismail, Ali A. & AlShabi, Mohammad & Bansal, Ramesh C. & Elnady, A. & Hamid, Abdul Kadir, 2023. "Control and estimation techniques applied to smart microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1991-:d:233920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.