IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2066-d235615.html
   My bibliography  Save this article

A Modified Step-Up DC-DC Flyback Converter with Active Snubber for Improved Efficiency

Author

Listed:
  • Cristian Pesce

    (Department of Electrical Engineering, Universidad de La Frontera, Temuco 4811230, Chile)

  • Javier Riedemann

    (Department of Electrical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile)

  • Ruben Pena

    (Department of Electrical Engineering, Universidad de Concepción, Concepción 4030000, Chile)

  • Werner Jara

    (Department of Electrical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile)

  • Camilo Maury

    (Department of Electrical Engineering, Universidad de La Frontera, Temuco 4811230, Chile)

  • Rodrigo Villalobos

    (Department of Electrical Engineering, Universidad de La Frontera, Temuco 4811230, Chile)

Abstract

The research on DC-DC power converters has been a matter of interest for years since this type of converter can be used in a wide range of applications. The main research is focused on increasing the converter voltage gain while obtaining a good efficiency and reliability. Among the different DC-DC converters, the flyback topology is well-known and widely used. In this paper, a novel high efficiency modified step-up DC-DC flyback converter is presented. The converter is based on a N -stages flyback converter with parallel connected inputs and series-connected outputs. The use of a single main diode and output capacitor reduces the number of passive elements and allows for a more economical implementation compared with interleaved flyback topologies. High efficiency is obtained by including an active snubber circuit, which returns the energy stored in the leakage inductance of the flyback transformers back to the input power supply. A 4.7 kW laboratory prototype is implemented considering four flyback stages with an input voltage of 96 V and an output voltage of 590 V, obtaining an efficiency of 95%. The converter operates in discontinuous current mode then facilitating the output voltage controller design. Experimental results are presented and discussed.

Suggested Citation

  • Cristian Pesce & Javier Riedemann & Ruben Pena & Werner Jara & Camilo Maury & Rodrigo Villalobos, 2019. "A Modified Step-Up DC-DC Flyback Converter with Active Snubber for Improved Efficiency," Energies, MDPI, vol. 12(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2066-:d:235615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mi Dong & Xiaoyu Tian & Li Li & Dongran Song & Lina Wang & Miao Zhao, 2018. "Model-Based Current Sharing Approach for DCM Interleaved Flyback Micro-Inverter," Energies, MDPI, vol. 11(7), pages 1-21, June.
    2. Sheng-Yu Tseng & Po-Jui Huang & Dong-Heng Wu, 2018. "Power Factor Corrector with Bridgeless Flyback Converter for DC Loads Applications," Energies, MDPI, vol. 11(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mostafa Bakkar & Ahmed Aboelhassan & Mostafa Abdelgeliel & Michael Galea, 2021. "PV Systems Control Using Fuzzy Logic Controller Employing Dynamic Safety Margin under Normal and Partial Shading Conditions," Energies, MDPI, vol. 14(4), pages 1-20, February.
    2. Kalina Detka & Krzysztof Górecki & Piotr Grzejszczak & Roman Barlik, 2021. "Modeling and Measurements of Properties of Coupled Inductors," Energies, MDPI, vol. 14(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Andres Ramos-Paja & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña, 2022. "Adaptive Sliding-Mode Controller for Flyback-Based PV Systems Featuring Constant Switching Frequency," Mathematics, MDPI, vol. 10(8), pages 1-27, April.
    2. Oswaldo Lopez-Santos & Alejandro J. Cabeza-Cabeza & Germain Garcia & Luis Martinez-Salamero, 2019. "Sliding Mode Control of the Isolated Bridgeless SEPIC High Power Factor Rectifier Interfacing an AC Source with a LVDC Distribution Bus," Energies, MDPI, vol. 12(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2066-:d:235615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.