IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3373-d571106.html
   My bibliography  Save this article

A Comparative Study of Adaptive Filtering Strategies for Hybrid Energy Storage Systems in Electric Vehicles

Author

Listed:
  • Hoai-Linh T. Nguyen

    (CTI Laboratory for EVs, School of Electrical Engineering, Hanoi University of Science and Technology, Hanoi 10000, Vietnam)

  • Bảo-Huy Nguyễn

    (CTI Laboratory for EVs, School of Electrical Engineering, Hanoi University of Science and Technology, Hanoi 10000, Vietnam
    e-TESC Laboratory, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada)

  • Thanh Vo-Duy

    (CTI Laboratory for EVs, School of Electrical Engineering, Hanoi University of Science and Technology, Hanoi 10000, Vietnam)

  • João Pedro F. Trovão

    (e-TESC Laboratory, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
    INESC Coimbra, DEEC, University of Coimbra, Polo II, 3030-290 Coimbra, Portugal
    Polytechnic Institute of Coimbra, IPC-ISEC, DEE, 3030-199 Coimbra, Portugal)

Abstract

Hybrid energy storage systems (HESSs) including batteries and supercapacitors (SCs) are a trendy research topic in the electric vehicle (EV) context with the expectation of optimizing the vehicle performance and battery lifespan. Active and semi-active HESSs need to be managed by energy management strategies (EMSs), which should be realized on real-time onboard platforms. A widely used approach is the filter-based EMS thanks to its simplicity and effectiveness. However, one question that always arises with these algorithms is how to determine the appropriate constant cut-off frequency. To tackle this challenge, this paper proposed three adaptive schemes for the filtering strategies based on the SC “ability” and evaluated their performance during the vehicle operation via an intensive comparative study. Offline simulation and experimental validation using signal hardware-in-the-loop (HIL) emulation showed that the proposed adaptive filtering EMS can reduce the battery rms current considerably. Specifically, the SC-energy-based, SOC-based, and voltage-based algorithms minimized the battery rms by up to 69%, 66%, and 64%, respectively, when compared to a pure battery EV in a fluctuating driving condition such as the urban Artemis cycle.

Suggested Citation

  • Hoai-Linh T. Nguyen & Bảo-Huy Nguyễn & Thanh Vo-Duy & João Pedro F. Trovão, 2021. "A Comparative Study of Adaptive Filtering Strategies for Hybrid Energy Storage Systems in Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3373-:d:571106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamila Snoussi & Seifeddine Ben Elghali & Mohamed Benbouzid & Mohamed Faouzi Mimouni, 2018. "Auto-Adaptive Filtering-Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-20, August.
    2. Castaings, Ali & Lhomme, Walter & Trigui, Rochdi & Bouscayrol, Alain, 2016. "Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints," Applied Energy, Elsevier, vol. 163(C), pages 190-200.
    3. Leehter Yao & Zolboo Damiran & Wei Hong Lim, 2017. "Optimal Charging and Discharging Scheduling for Electric Vehicles in a Parking Station with Photovoltaic System and Energy Storage System," Energies, MDPI, vol. 10(4), pages 1-20, April.
    4. Thanh Vo-Duy & Minh C. Ta & Bảo-Huy Nguyễn & João Pedro F. Trovão, 2020. "Experimental Platform for Evaluation of On-Board Real-Time Motion Controllers for Electric Vehicles," Energies, MDPI, vol. 13(23), pages 1-28, December.
    5. Trovão, João P. & Pereirinha, Paulo G. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2013. "A multi-level energy management system for multi-source electric vehicles – An integrated rule-based meta-heuristic approach," Applied Energy, Elsevier, vol. 105(C), pages 304-318.
    6. Trovão, João P. & Silva, Mário A. & Antunes, Carlos Henggeler & Dubois, Maxime R., 2017. "Stability enhancement of the motor drive DC input voltage of an electric vehicle using on-board hybrid energy storage systems," Applied Energy, Elsevier, vol. 205(C), pages 244-259.
    7. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Hou, Jun & Han, Xuebing & Ouyang, Minggao, 2014. "Energy management strategies comparison for electric vehicles with hybrid energy storage system," Applied Energy, Elsevier, vol. 134(C), pages 321-331.
    8. Jun Peng & Rui Wang & Hongtao Liao & Yanhui Zhou & Heng Li & Yue Wu & Zhiwu Huang, 2019. "A Real-Time Layer-Adaptive Wavelet Transform Energy Distribution Strategy in a Hybrid Energy Storage System of EVs," Energies, MDPI, vol. 12(3), pages 1-17, January.
    9. Yanzi Wang & Weida Wang & Yulong Zhao & Lei Yang & Wenjun Chen, 2016. "A Fuzzy-Logic Power Management Strategy Based on Markov Random Prediction for Hybrid Energy Storage Systems," Energies, MDPI, vol. 9(1), pages 1-20, January.
    10. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Bảo-Huy Nguyễn & João Pedro F. Trovão & Ronan German & Alain Bouscayrol, 2020. "Real-Time Energy Management of Parallel Hybrid Electric Vehicles Using Linear Quadratic Regulation," Energies, MDPI, vol. 13(21), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhangyu Lu & Xizheng Zhang, 2022. "Composite Non-Linear Control of Hybrid Energy-Storage System in Electric Vehicle," Energies, MDPI, vol. 15(4), pages 1-15, February.
    2. Vishnu P. Sidharthan & Yashwant Kashyap & Panagiotis Kosmopoulos, 2023. "Adaptive-Energy-Sharing-Based Energy Management Strategy of Hybrid Sources in Electric Vehicles," Energies, MDPI, vol. 16(3), pages 1-26, January.
    3. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    2. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    3. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    4. Xiang, Changle & Ding, Feng & Wang, Weida & He, Wei, 2017. "Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control," Applied Energy, Elsevier, vol. 189(C), pages 640-653.
    5. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    6. Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
    7. Zhuang, Weichao & Ye, Jianwei & Song, Ziyou & Yin, Guodong & Li, Guangmin, 2020. "Comparison of semi-active hybrid battery system configurations for electric taxis application," Applied Energy, Elsevier, vol. 259(C).
    8. Sadam Hussain & Muhammad Umair Ali & Gwan-Soo Park & Sarvar Hussain Nengroo & Muhammad Adil Khan & Hee-Je Kim, 2019. "A Real-Time Bi-Adaptive Controller-Based Energy Management System for Battery–Supercapacitor Hybrid Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-24, December.
    9. Ashleigh Townsend & Rupert Gouws, 2023. "A Comparative Review of Capacity Measurement in Energy Storage Devices," Energies, MDPI, vol. 16(10), pages 1-26, May.
    10. Trovão, João P. & Silva, Mário A. & Antunes, Carlos Henggeler & Dubois, Maxime R., 2017. "Stability enhancement of the motor drive DC input voltage of an electric vehicle using on-board hybrid energy storage systems," Applied Energy, Elsevier, vol. 205(C), pages 244-259.
    11. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    12. Bảo-Huy Nguyễn & João Pedro F. Trovão & Ronan German & Alain Bouscayrol, 2020. "Real-Time Energy Management of Parallel Hybrid Electric Vehicles Using Linear Quadratic Regulation," Energies, MDPI, vol. 13(21), pages 1-19, October.
    13. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    14. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    15. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    16. Kim, Myungchin & Bae, Sungwoo, 2017. "Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system," Applied Energy, Elsevier, vol. 188(C), pages 444-455.
    17. Naoui Mohamed & Flah Aymen & Abdullah Altamimi & Zafar A. Khan & Sbita Lassaad, 2022. "Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    18. Hu, Jie & Liu, Di & Du, Changqing & Yan, Fuwu & Lv, Chen, 2020. "Intelligent energy management strategy of hybrid energy storage system for electric vehicle based on driving pattern recognition," Energy, Elsevier, vol. 198(C).
    19. Long Cheng & Wei Wang & Shaoyuan Wei & Hongtao Lin & Zhidong Jia, 2018. "An Improved Energy Management Strategy for Hybrid Energy Storage System in Light Rail Vehicles," Energies, MDPI, vol. 11(2), pages 1-15, February.
    20. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3373-:d:571106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.