IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v192y2024ics1364032123010547.html
   My bibliography  Save this article

Hybrid energy storage: Features, applications, and ancillary benefits

Author

Listed:
  • Reveles-Miranda, María
  • Ramirez-Rivera, Victor
  • Pacheco-Catalán, Daniella

Abstract

Energy storage devices (ESDs) provide solutions for uninterrupted supply in remote areas, autonomy in electric vehicles, and generation and demand flexibility in grid-connected systems; however, each ESD has technical limitations to meet high-specific energy and power simultaneously. The complement of the supercapacitors (SC) and the batteries (Li-ion or Lead-acid) features in a hybrid energy storage system (HESS) allows the combination of energy-power-based storage, improving the technical features and getting additional benefits. The value of HESS increases with its capacity to enhance the quality of power (PQ), maximize battery performance, sizing optimization, and non-technical profits related to efficiency, cost reduction, and environmental impact. This review proposes a HESS-main classification with an ancillary services sub-classification into (i) power quality support and power systems protection, (ii) energy management, and (iii) non-technical benefits. The services-oriented review considers the scope and goals achieved by each application, and it discusses the ancillary services covered directly and collaterally as a reference to evaluate and provide insight into the HESS implementation value and open the panorama to a potential reduction in investment costs to help this storage technology more profitable. Finally, it summarizes the current status of HESS, analyzing the storage needs of future electronic devices, large-scale power systems, and the growth outlook of isolated renewable energy (RE) systems for the research and development of new HESS.

Suggested Citation

  • Reveles-Miranda, María & Ramirez-Rivera, Victor & Pacheco-Catalán, Daniella, 2024. "Hybrid energy storage: Features, applications, and ancillary benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010547
    DOI: 10.1016/j.rser.2023.114196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamsal, Dipesh & Sreeram, Victor & Mishra, Yateendra & Kumar, Deepak, 2019. "Output power smoothing control approaches for wind and photovoltaic generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    3. Thien-An Nguyen-Huu & Van Thang Nguyen & Kyeon Hur & Jae Woong Shim, 2020. "Coordinated Control of a Hybrid Energy Storage System for Improving the Capability of Frequency Regulation and State-of-Charge Management," Energies, MDPI, vol. 13(23), pages 1-21, November.
    4. Chrispin Tumba Tshiani & Patrice Umenne, 2022. "The Impact of the Electric Double-Layer Capacitor (EDLC) in Reducing Stress and Improving Battery Lifespan in a Hybrid Energy Storage System (HESS) System," Energies, MDPI, vol. 15(22), pages 1-19, November.
    5. Wang, Y. & Qiao, X. & Zhang, C. & Zhou, Xiangyang, 2018. "Self-discharge of a hybrid supercapacitor with incorporated galvanic cell components," Energy, Elsevier, vol. 159(C), pages 1035-1045.
    6. Mustafa Ergin Şahin & Frede Blaabjerg & Ariya Sangwongwanich, 2022. "A Comprehensive Review on Supercapacitor Applications and Developments," Energies, MDPI, vol. 15(3), pages 1-26, January.
    7. Robert Salas-Puente & Silvia Marzal & Raul Gonzalez-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization," Energies, MDPI, vol. 11(7), pages 1-31, July.
    8. Alejandro Sallyth Guerrero Hernandez & Lúcia Valéria Ramos Arruda, 2021. "Economic viability and optimization of solar microgrids with hybrid storage in a non-interconnected zone in Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12842-12866, September.
    9. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Chen, Hui & Zhang, Zehui & Guan, Cong & Gao, Haibo, 2020. "Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship," Energy, Elsevier, vol. 197(C).
    11. Li, Shenglin & Zhu, Jizhong & Dong, Hanjiang & Zhu, Haohao & Fan, Junwei, 2022. "A novel rolling optimization strategy considering grid-connected power fluctuations smoothing for renewable energy microgrids," Applied Energy, Elsevier, vol. 309(C).
    12. Miklós Gyalai-Korpos & László Zentkó & Csaba Hegyfalvi & Gergely Detzky & Péter Tildy & Nóra Hegedűsné Baranyai & Gábor Pintér & Henrik Zsiborács, 2020. "The Role of Electricity Balancing and Storage: Developing Input Parameters for the European Calculator for Concept Modeling," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    13. Abdelkader, Abbassi & Rabeh, Abbassi & Mohamed Ali, Dami & Mohamed, Jemli, 2018. "Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy storage," Energy, Elsevier, vol. 163(C), pages 351-363.
    14. Hu, Jie & Liu, Di & Du, Changqing & Yan, Fuwu & Lv, Chen, 2020. "Intelligent energy management strategy of hybrid energy storage system for electric vehicle based on driving pattern recognition," Energy, Elsevier, vol. 198(C).
    15. Luta, Doudou N. & Raji, Atanda K., 2019. "Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications," Energy, Elsevier, vol. 166(C), pages 530-540.
    16. Wei Li & Hang Li & Zheng He & Weijie Ji & Jing Zeng & Xue Li & Yiyong Zhang & Peng Zhang & Jinbao Zhao, 2022. "Electrochemical Failure Results Inevitable Capacity Degradation in Li-Ion Batteries—A Review," Energies, MDPI, vol. 15(23), pages 1-28, December.
    17. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    19. Mohamed Louzazni & Daniel Tudor Cotfas & Petru Adrian Cotfas, 2020. "Management and Performance Control Analysis of Hybrid Photovoltaic Energy Storage System under Variable Solar Irradiation," Energies, MDPI, vol. 13(12), pages 1-23, June.
    20. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    21. Guney, Mukrimin Sevket & Tepe, Yalcin, 2017. "Classification and assessment of energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1187-1197.
    22. Barra, P.H.A. & de Carvalho, W.C. & Menezes, T.S. & Fernandes, R.A.S. & Coury, D.V., 2021. "A review on wind power smoothing using high-power energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    23. Mayyas, Ahmad & Chadly, Assia & Amer, Saed Talib & Azar, Elie, 2022. "Economics of the Li-ion batteries and reversible fuel cells as energy storage systems when coupled with dynamic electricity pricing schemes," Energy, Elsevier, vol. 239(PA).
    24. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    25. Maria Guadalupe Reveles-Miranda & Manuel Israel Flota-Bañuelos & Freddy Chan-Puc & Daniella Pacheco-Catalán, 2017. "Experimental Evaluation of a Switching Matrix Applied in a Bank of Supercapacitors," Energies, MDPI, vol. 10(12), pages 1-12, December.
    26. Gustavo Navarro & Jorge Torres & Marcos Blanco & Jorge Nájera & Miguel Santos-Herran & Marcos Lafoz, 2021. "Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications," Energies, MDPI, vol. 14(11), pages 1-29, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hongze & Sun, Dongyang & Li, Bingkang & Wang, Xuejie & Zhao, Yihang & Wei, Mengru & Dang, Xiaolu, 2023. "Collaborative optimization of VRB-PS hybrid energy storage system for large-scale wind power grid integration," Energy, Elsevier, vol. 265(C).
    2. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Barra, P.H.A. & Coury, D.V. & Fernandes, R.A.S., 2020. "A survey on adaptive protection of microgrids and distribution systems with distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Li, Bei & Miao, Hongzhi & Li, Jiangchen, 2021. "Multiple hydrogen-based hybrid storage systems operation for microgrids: A combined TOPSIS and model predictive control methodology," Applied Energy, Elsevier, vol. 283(C).
    5. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    7. Alejandro Sallyth Guerrero Hernandez & Lúcia Valéria Ramos Arruda, 2021. "Economic viability and optimization of solar microgrids with hybrid storage in a non-interconnected zone in Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12842-12866, September.
    8. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    9. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
    10. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    14. Mohamed Louzazni & Daniel Tudor Cotfas & Petru Adrian Cotfas, 2020. "Management and Performance Control Analysis of Hybrid Photovoltaic Energy Storage System under Variable Solar Irradiation," Energies, MDPI, vol. 13(12), pages 1-23, June.
    15. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Khiadani, Mehdi & Das, Choton K., 2019. "An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses," Applied Energy, Elsevier, vol. 247(C), pages 228-236.
    16. Khabibulla A. Abdullin & Maratbek T. Gabdullin & Zhanar K. Kalkozova & Shyryn T. Nurbolat & Mojtaba Mirzaeian, 2023. "Symmetrical Composite Supercapacitor Based on Activated Carbon and Cobalt Nanoparticles with High Cyclic Stability and Current Load," Energies, MDPI, vol. 16(11), pages 1-19, May.
    17. Islam, M.S. & Das, Barun K. & Das, Pronob & Rahaman, Md Habibur, 2021. "Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada," Energy, Elsevier, vol. 220(C).
    18. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    19. Olabi, Abdul Ghani & Abbas, Qaisar & Shinde, Pragati A. & Abdelkareem, Mohammad Ali, 2023. "Rechargeable batteries: Technological advancement, challenges, current and emerging applications," Energy, Elsevier, vol. 266(C).
    20. Corentin Jankowiak & Aggelos Zacharopoulos & Caterina Brandoni & Patrick Keatley & Paul MacArtain & Neil Hewitt, 2019. "The Role of Domestic Integrated Battery Energy Storage Systems for Electricity Network Performance Enhancement," Energies, MDPI, vol. 12(20), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.