IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p257-d305246.html
   My bibliography  Save this article

Fault Ride-Through Power Electronic Topologies for Hybrid Energy Storage Systems

Author

Listed:
  • Ramy Georgious

    (LEMUR Research Group, Deprtment of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, 33204 Gijon, Spain)

  • Jorge Garcia

    (LEMUR Research Group, Deprtment of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, 33204 Gijon, Spain)

  • Mark Sumner

    (PEMC Research Group, Deprtment of Electrical and Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

  • Sarah Saeed

    (LEMUR Research Group, Deprtment of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, 33204 Gijon, Spain)

  • Pablo Garcia

    (LEMUR Research Group, Deprtment of Electrical, Electronic, Computers and Systems Engineering, University of Oviedo, 33204 Gijon, Spain)

Abstract

This work presents a fault ride-through control scheme for a non-isolated power topology used in a hybrid energy storage system designed for DC microgrids. The hybrid system is formed by a lithium-ion battery bank and a supercapacitor module, both coordinated to achieve a high-energy and high-power combined storage system. This hybrid system is connected to a DC bus that manages the power flow of the microgrid. The power topology under consideration is based on the buck-boost bidirectional converter, and it is controlled through a bespoke modulation scheme to obtain low losses at nominal operation. The operation of the proposed control scheme during a DC bus short-circuit failure is shown, as well as a modification to the standard control to achieve fault ride-through capability once the fault is over. The proposed control provides a protection to the energy storage systems and the converter itself during the DC bus short-circuit fault. The operation of the converter is developed theoretically, and it has been verified through both simulations and experimental validation on a built prototype.

Suggested Citation

  • Ramy Georgious & Jorge Garcia & Mark Sumner & Sarah Saeed & Pablo Garcia, 2020. "Fault Ride-Through Power Electronic Topologies for Hybrid Energy Storage Systems," Energies, MDPI, vol. 13(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:257-:d:305246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Zhun Meng & Guo-Dong Li, 2017. "An Isolated Three-Port Bidirectional DC-DC Converter with Enlarged ZVS Region for HESS Applications in DC Microgrids," Energies, MDPI, vol. 10(4), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo Navarro & Jorge Torres & Marcos Blanco & Jorge Nájera & Miguel Santos-Herran & Marcos Lafoz, 2021. "Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications," Energies, MDPI, vol. 14(11), pages 1-29, May.
    2. Gabriel R. Broday & Gilney Damm & William Pasillas-Lépine & Luiz A. C. Lopes, 2021. "A Unified Controller for Multi-State Operation of the Bi-Directional Buck–Boost DC-DC Converter," Energies, MDPI, vol. 14(23), pages 1-21, November.
    3. Hyun Shin & Sang Heon Chae & Eel-Hwan Kim, 2020. "Design of Microgrid Protection Schemes Using PSCAD/EMTDC and ETAP Programs," Energies, MDPI, vol. 13(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Yong-Nong Chang & Yih-Her Yan & Sheng-Min Huang, 2023. "An Isolated Three-Port Power Converter with 2C3L and 2C2L Resonant Circuits," Energies, MDPI, vol. 16(4), pages 1-18, February.
    3. Ramy Georgious & Jorge Garcia & Pablo Garcia & Angel Navarro-Rodriguez, 2018. "A Comparison of Non-Isolated High-Gain Three-Port Converters for Hybrid Energy Storage Systems," Energies, MDPI, vol. 11(3), pages 1-24, March.
    4. Shu-huai Zhang & Yi-feng Wang & Bo Chen & Fu-qiang Han & Qing-cui Wang, 2018. "Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy," Energies, MDPI, vol. 11(1), pages 1-22, January.
    5. Pablo Quintana-Barcia & Tomislav Dragicevic & Jorge Garcia & Javier Ribas & Josep M. Guerrero, 2018. "A Distributed Control Strategy for Islanded Single-Phase Microgrids with Hybrid Energy Storage Systems Based on Power Line Signaling," Energies, MDPI, vol. 12(1), pages 1-16, December.
    6. Matej Bereš & Dobroslav Kováč & Tibor Vince & Irena Kováčová & Ján Molnár & Iveta Tomčíková & Jozef Dziak & Patrik Jacko & Branislav Fecko & Šimon Gans, 2021. "Efficiency Enhancement of Non-Isolated DC-DC Interleaved Buck Converter for Renewable Energy Sources," Energies, MDPI, vol. 14(14), pages 1-15, July.
    7. Dorin Petreus & Radu Etz & Toma Patarau & Ionut Ciocan, 2020. "Comprehensive Analysis of a High-Power Density Phase-Shift Full Bridge Converter Highlighting the Effects of the Parasitic Capacitances," Energies, MDPI, vol. 13(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:257-:d:305246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.