IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1051-1061.html
   My bibliography  Save this article

Dynamic analysis of a six-degree of freedom wave energy converter based on the concept of the Stewart-Gough platform

Author

Listed:
  • Galván-Pozos, D.E.
  • Ocampo-Torres, F.J.

Abstract

A novel wave energy converter (WEC) design, based on the concept of the Stewart-Gough platform (SGP) is being investigated. The main objectives of this study are to present the proposed WEC based on the SGP (WEC-SGP) and to establish the necessary equations to describe the motion of the SGP to be used as a WEC. A kinematic analysis is developed to evaluate the leg lengths required to track the planned trajectory determined by the elevation of the free surface of the sea. Furthermore, the WEC-SGP dynamical analysis as formulated by the Newton-Euler approach is solved to find the required leg forces to support the effect of the hydrodynamic forces and the force moments acting on the upper floating component. Linear wave theory is used to analyze the WEC-SGP and some of the kinematic aspects of linear waves are used as input information for the kinematic and dynamic analysis. The instantaneous and mean power provided by the WEC-PSG are calculated for regular wave conditions. The results show that the proposed WEC-SGP configuration might increase the conversion of the wave energy, since all degrees of freedom in its motion are being used, as compared with the traditional heaving point absorber WEC.

Suggested Citation

  • Galván-Pozos, D.E. & Ocampo-Torres, F.J., 2020. "Dynamic analysis of a six-degree of freedom wave energy converter based on the concept of the Stewart-Gough platform," Renewable Energy, Elsevier, vol. 146(C), pages 1051-1061.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1051-1061
    DOI: 10.1016/j.renene.2019.06.177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zabihian, Farshid & Fung, Alan S., 2011. "Review of marine renewable energies: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2461-2474, June.
    2. Sergiienko, N.Y. & Cazzolato, B.S. & Ding, B. & Arjomandi, M., 2016. "An optimal arrangement of mooring lines for the three-tether submerged point-absorbing wave energy converter," Renewable Energy, Elsevier, vol. 93(C), pages 27-37.
    3. Stansby, P. & Carpintero Moreno, E. & Stallard, T. & Maggi, A., 2015. "Three-float broad-band resonant line absorber with surge for wave energy conversion," Renewable Energy, Elsevier, vol. 78(C), pages 132-140.
    4. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amini, Erfan & Mehdipour, Hossein & Faraggiana, Emilio & Golbaz, Danial & Mozaffari, Sevda & Bracco, Giovanni & Neshat, Mehdi, 2022. "Optimization of hydraulic power take-off system settings for point absorber wave energy converter," Renewable Energy, Elsevier, vol. 194(C), pages 938-954.
    2. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Zulkifli Mohd Yusop & Aliashim Albani, 2020. "An Estimation of Hydraulic Power Take-off Unit Parameters for Wave Energy Converter Device Using Non-Evolutionary NLPQL and Evolutionary GA Approaches," Energies, MDPI, vol. 14(1), pages 1-26, December.
    3. Galván-Pozos, D.E. & Sergiienko, N.Y. & García-Nava, H. & Ocampo-Torres, F.J. & Osuna-Cañedo, J.P., 2024. "Numerical analysis of the energy capture performance of a six-leg wave energy converter under Mexican waters wave conditions," Renewable Energy, Elsevier, vol. 228(C).
    4. Zhang, Yongxing & Huang, Zhicong & Zou, Bowei & Bian, Jing, 2023. "Conceptual design and analysis for a novel parallel configuration-type wave energy converter," Renewable Energy, Elsevier, vol. 208(C), pages 627-644.
    5. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    6. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    2. Ma, Yong & Zhang, Aiming & Yang, Lele & Li, Hao & Zhai, Zhenfeng & Zhou, Heng, 2020. "Motion simulation and performance analysis of two-body floating point absorber wave energy converter," Renewable Energy, Elsevier, vol. 157(C), pages 353-367.
    3. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    4. Erfan Amini & Danial Golbaz & Fereidoun Amini & Meysam Majidi Nezhad & Mehdi Neshat & Davide Astiaso Garcia, 2020. "A Parametric Study of Wave Energy Converter Layouts in Real Wave Models," Energies, MDPI, vol. 13(22), pages 1-23, November.
    5. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    6. Carpintero Moreno, Efrain & Stansby, Peter, 2019. "The 6-float wave energy converter M4: Ocean basin tests giving capture width, response and energy yield for several sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 307-318.
    7. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    8. Santo, H. & Taylor, P.H. & Stansby, P.K., 2020. "The performance of the three-float M4 wave energy converter off Albany, on the south coast of western Australia, compared to Orkney (EMEC) in the U.K," Renewable Energy, Elsevier, vol. 146(C), pages 444-459.
    9. Galván-Pozos, D.E. & Sergiienko, N.Y. & García-Nava, H. & Ocampo-Torres, F.J. & Osuna-Cañedo, J.P., 2024. "Numerical analysis of the energy capture performance of a six-leg wave energy converter under Mexican waters wave conditions," Renewable Energy, Elsevier, vol. 228(C).
    10. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    11. Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Rodríguez, Claudio A. & Ramos, Victor & López, Mario, 2019. "The CECO wave energy converter: Recent developments," Renewable Energy, Elsevier, vol. 139(C), pages 368-384.
    12. Jeong-Seok Kim & Kyong-Hwan Kim & Jiyong Park & Sewan Park & Seung Ho Shin, 2021. "A Numerical Study on Hydrodynamic Energy Conversions of OWC-WEC with the Linear Decomposition Method under Irregular Waves," Energies, MDPI, vol. 14(6), pages 1-17, March.
    13. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Santo, H. & Taylor, P.H. & Eatock Taylor, R. & Stansby, P., 2016. "Decadal variability of wave power production in the North-East Atlantic and North Sea for the M4 machine," Renewable Energy, Elsevier, vol. 91(C), pages 442-450.
    15. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    16. López, M. & Taveira-Pinto, F. & Rosa-Santos, P., 2017. "Influence of the power take-off characteristics on the performance of CECO wave energy converter," Energy, Elsevier, vol. 120(C), pages 686-697.
    17. Yu, Tongshun & Shi, Hongda & Song, Wenfu, 2018. "Rotational characteristics and capture efficiency of a variable guide vane wave energy converter," Renewable Energy, Elsevier, vol. 122(C), pages 275-290.
    18. Brito, Moisés & Ferreira, Rui M.L. & Teixeira, Luis & Neves, Maria G. & Canelas, Ricardo B., 2020. "Experimental investigation on the power capture of an oscillating wave surge converter in unidirectional waves," Renewable Energy, Elsevier, vol. 151(C), pages 975-992.
    19. Zereshkian, Sajjad & Mansoury, Dariush, 2021. "A study on the feasibility of using solar radiation energy and ocean thermal energy conversion to supply electricity for offshore oil and gas fields in the Caspian Sea," Renewable Energy, Elsevier, vol. 163(C), pages 66-77.
    20. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1051-1061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.