IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1613-d755458.html
   My bibliography  Save this article

Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting

Author

Listed:
  • Can Ding

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Yiyuan Zhou

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Qingchang Ding

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Kaiming Li

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

Abstract

The optimal utilization of wind power and the application of carbon capture power plants are important measures to achieve a low-carbon power system, but the high-energy consumption of carbon capture power plants and the uncertainty of wind power lead to low-carbon coordination problems during load peaks. To address these problems, firstly, the EEMD-LSTM-SVR algorithm is proposed to forecast wind power in the Belgian grid in order to tackle the uncertainty and strong volatility of wind power. Furthermore, the conventional thermal power plant is transformed into an integrated carbon capture power plant containing split-flow and liquid storage type, and the low-carbon mechanism of the two approaches is adequately discussed to give the low-carbon realization mechanism of the power system. Secondly, the mathematical model of EEMD-LSTM-SVR algorithm and the integrated low-carbon economic dispatch model are constructed. Finally, the simulation is verified in a modified IEEE-39 node system with carbon capture power plant. Compared with conventional thermal power plants, the carbon emissions of integrated carbon capture plants will be reduced by 78.248%; the abandoned wind of split carbon capture plants is reduced by 53.525%; the total cost of wind power for dispatch predicted using the EEMD-LSTM-SVR algorithm will be closer to the actual situation, with a difference of only USD 60. The results demonstrate that the dispatching strategy proposed in this paper can effectively improve the accuracy of wind power prediction and combine with the integrated carbon capture power plant to improve the system wind power absorption capacity and operational efficiency while achieving the goal of low carbon emission.

Suggested Citation

  • Can Ding & Yiyuan Zhou & Qingchang Ding & Kaiming Li, 2022. "Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting," Energies, MDPI, vol. 15(5), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1613-:d:755458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kihan Kim & Jin Hur, 2019. "Weighting Factor Selection of the Ensemble Model for Improving Forecast Accuracy of Photovoltaic Generating Resources," Energies, MDPI, vol. 12(17), pages 1-13, August.
    2. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    3. Bokde, Neeraj Dhanraj & Tranberg, Bo & Andresen, Gorm Bruun, 2021. "Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling," Applied Energy, Elsevier, vol. 281(C).
    4. Tingting Zhu & Yiren Guo & Zhenye Li & Cong Wang, 2021. "Solar Radiation Prediction Based on Convolution Neural Network and Long Short-Term Memory," Energies, MDPI, vol. 14(24), pages 1-16, December.
    5. Jingliang Jin & Qinglan Wen & Xianyue Zhang & Siqi Cheng & Xiaojun Guo, 2021. "Economic Emission Dispatch for Wind Power Integrated System with Carbon Trading Mechanism," Energies, MDPI, vol. 14(7), pages 1-17, March.
    6. Neeraj Bokde & Andrés Feijóo & Nadhir Al-Ansari & Siyu Tao & Zaher Mundher Yaseen, 2020. "The Hybridization of Ensemble Empirical Mode Decomposition with Forecasting Models: Application of Short-Term Wind Speed and Power Modeling," Energies, MDPI, vol. 13(7), pages 1-23, April.
    7. Yuhong Xie & Yuzuru Ueda & Masakazu Sugiyama, 2021. "A Two-Stage Short-Term Load Forecasting Method Using Long Short-Term Memory and Multilayer Perceptron," Energies, MDPI, vol. 14(18), pages 1-17, September.
    8. Sizhou Sun & Lisheng Wei & Jie Xu & Zhenni Jin, 2019. "A New Wind Speed Forecasting Modeling Strategy Using Two-Stage Decomposition, Feature Selection and DAWNN," Energies, MDPI, vol. 12(3), pages 1-24, January.
    9. Fahad Radhi Alharbi & Denes Csala, 2021. "Wind Speed and Solar Irradiance Prediction Using a Bidirectional Long Short-Term Memory Model Based on Neural Networks," Energies, MDPI, vol. 14(20), pages 1-22, October.
    10. Bicheng Tan & Xin Ke & Dachuan Tang & Sheng Yin, 2019. "Improved Perturb and Observation Method Based on Support Vector Regression," Energies, MDPI, vol. 12(6), pages 1-11, March.
    11. Ling Mao & Jie Xu & Jiajun Chen & Jinbin Zhao & Yuebao Wu & Fengjun Yao, 2020. "A LSTM-STW and GS-LM Fusion Method for Lithium-Ion Battery RUL Prediction Based on EEMD," Energies, MDPI, vol. 13(9), pages 1-13, May.
    12. Meftah Elsaraiti & Adel Merabet, 2021. "A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for Predicting Wind Speed," Energies, MDPI, vol. 14(20), pages 1-16, October.
    13. Marvin Barivure Sigalo & Ajit C. Pillai & Saptarshi Das & Mohammad Abusara, 2021. "An Energy Management System for the Control of Battery Storage in a Grid-Connected Microgrid Using Mixed Integer Linear Programming," Energies, MDPI, vol. 14(19), pages 1-14, September.
    14. Faisal Mohammad & Mohamed A. Ahmed & Young-Chon Kim, 2021. "Efficient Energy Management Based on Convolutional Long Short-Term Memory Network for Smart Power Distribution System," Energies, MDPI, vol. 14(19), pages 1-23, September.
    15. Yeojin Kim & Jin Hur, 2020. "An Ensemble Forecasting Model of Wind Power Outputs Based on Improved Statistical Approaches," Energies, MDPI, vol. 13(5), pages 1-11, March.
    16. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    17. Xiuyun Wang & Yibing Zhou & Junyu Tian & Jian Wang & Yang Cui, 2018. "Wind Power Consumption Research Based on Green Economic Indicators," Energies, MDPI, vol. 11(10), pages 1-24, October.
    18. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Dong-Ho Kang & Jin-Young Kang & Hae-Su Park, 2020. "Machine Learning-Based Approach to Predict Energy Consumption of Renewable and Nonrenewable Power Sources," Energies, MDPI, vol. 13(18), pages 1-16, September.
    19. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
    20. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    21. Jing Liu & Wei Sun & Gareth P. Harrison, 2019. "Optimal Low-Carbon Economic Environmental Dispatch of Hybrid Electricity-Natural Gas Energy Systems Considering P2G," Energies, MDPI, vol. 12(7), pages 1-17, April.
    22. Feyruz Mustafayev & Przemyslaw Kulawczuk & Christian Orobello, 2022. "Renewable Energy Status in Azerbaijan: Solar and Wind Potentials for Future Development," Energies, MDPI, vol. 15(2), pages 1-24, January.
    23. Jiabao Du & Changxi Yue & Ying Shi & Jicheng Yu & Fan Sun & Changjun Xie & Tao Su, 2021. "A Frequency Decomposition-Based Hybrid Forecasting Algorithm for Short-Term Reactive Power," Energies, MDPI, vol. 14(20), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aryan Saxena & Jai Prakash Gupta & Janmejay Kumar Tiwary & Ashutosh Kumar & Saurav Sharma & Gaurav Pandey & Susham Biswas & Krishna Raghav Chaturvedi, 2024. "Innovative Pathways in Carbon Capture: Advancements and Strategic Approaches for Effective Carbon Capture, Utilization, and Storage," Sustainability, MDPI, vol. 16(22), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuzgec, Ugur & Dokur, Emrah & Balci, Mehmet, 2024. "A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting," Energy, Elsevier, vol. 300(C).
    2. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    3. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    4. Ouyang, Tiancheng & Pan, Mingming & Huang, Youbin & Tan, Xianlin & Qin, Peijia, 2023. "Thermodynamic design and power prediction of a solar power tower integrated system using neural networks," Energy, Elsevier, vol. 278(PA).
    5. Kui Yang & Bofu Wang & Xiang Qiu & Jiahua Li & Yuze Wang & Yulu Liu, 2022. "Multi-Step Short-Term Wind Speed Prediction Models Based on Adaptive Robust Decomposition Coupled with Deep Gated Recurrent Unit," Energies, MDPI, vol. 15(12), pages 1-24, June.
    6. Aranzazu D. Martin & Juan M. Cano & Reyes S. Herrera & Jesus R. Vazquez, 2019. "Wireless Sliding MPPT Control of Photovoltaic Systems in Distributed Generation Systems," Energies, MDPI, vol. 12(17), pages 1-16, August.
    7. Neilson Luniere Vilaça & Marly Guimarães Fernandes Costa & Cicero Ferreira Fernandes Costa Filho, 2023. "A Hybrid Deep Neural Network Architecture for Day-Ahead Electricity Forecasting: Post-COVID Paradigm," Energies, MDPI, vol. 16(8), pages 1-14, April.
    8. Saif Jamal & Jagadeesh Pasupuleti & Nur Azzammudin Rahmat & Nadia M. L. Tan, 2022. "Energy Management System for Grid-Connected Nanogrid during COVID-19," Energies, MDPI, vol. 15(20), pages 1-20, October.
    9. Periklis Gogas & Theophilos Papadimitriou, 2023. "Machine Learning in Renewable Energy," Energies, MDPI, vol. 16(5), pages 1-3, February.
    10. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    11. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    12. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    13. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    14. Li, Xueling & Chang, Huawei & Duan, Chen & Zheng, Yao & Shu, Shuiming, 2019. "Thermal performance analysis of a novel linear cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 237(C), pages 431-439.
    15. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    16. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    17. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    18. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    19. Lifang Zhang & Jianzhou Wang & Zhenkun Liu, 2023. "Power grid operation optimization and forecasting using a combined forecasting system," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 124-153, January.
    20. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1613-:d:755458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.