IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v164y2018icp910-924.html
   My bibliography  Save this article

Insights into the characteristics of technologies and industrialization for plug-in electric cars in China

Author

Listed:
  • Du, Jiuyu
  • Meng, Xiangfeng
  • Li, Jianqiu
  • Wu, Xiaogang
  • Song, Ziyou
  • Ouyang, Minggao

Abstract

Plug-in electric vehicles (PEVs) have been seen by many countries as a solution to the fossil fuel consumption and urban air pollution problems of the transportation sector. PEV stocks climbed to 1 million in 2015 and doubled as of 2016. Although the global mass market is developing, developmental laws for the technologies and industrialization of PEVs still need to be identified. These laws are necessary for finding solution to the problems of PEV penetration in the future. On the basis of a characteristic analysis of global PEV marketing progress, it can be found that China is becoming the main player in PEV sales and market penetration. It has potential be the largest PEV market in the world in future. Although China has the advantages of market volume, there are still severe challenges for the further mass adoption of PEVs in China. Therefore, a comprehensive evaluation on the evolution of China's PEV industry and technology is desirable as a foundation for identifying key problems regarding market penetration, so as to devise a long-term national PEV strategy. This study are performed based on detailed PEV marketing and technological data to present an in-depth view. A three-dimensional (market penetration rate, constitution, and concentration) evaluation method is proposed, and the market-acceptance indicators and cluster analysis method are used to analyze the correlations between the all-electric range (AER) of PEVs and market acceptance. This research allows us to draw several conclusions: (a) initial PEV market penetration depends mainly on fiscal incentive policies, which also strongly influences the technological roadmap for PECs; (b) A0-and A-class sedans are the dominant models for individuals, and small battery electric cars (BECs) will hold a large market share for a long time; (c) range-extended-type plug-in hybrid electric cars (PHECs) are suitable and competitive for Chinese local companies; and (d) the acceptable cost-benefit AERs are 150–170 km for privately purchased BECs. Electric taxis, however, require the AER to be over 300 km.

Suggested Citation

  • Du, Jiuyu & Meng, Xiangfeng & Li, Jianqiu & Wu, Xiaogang & Song, Ziyou & Ouyang, Minggao, 2018. "Insights into the characteristics of technologies and industrialization for plug-in electric cars in China," Energy, Elsevier, vol. 164(C), pages 910-924.
  • Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:910-924
    DOI: 10.1016/j.energy.2018.09.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218318243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ying & Davis, Chris & Lukszo, Zofia & Weijnen, Margot, 2016. "Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications," Applied Energy, Elsevier, vol. 173(C), pages 535-554.
    2. Codani, Paul & Perez, Yannick & Petit, Marc, 2016. "Financial shortfall for electric vehicles: Economic impacts of Transmission System Operators market designs," Energy, Elsevier, vol. 113(C), pages 422-431.
    3. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    4. Chen, Zeyu & Xiong, Rui & Wang, Chun & Cao, Jiayi, 2017. "An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1663-1672.
    5. Yan Zhou & Michael Wang & Han Hao & Larry Johnson & Hewu Wang & Han Hao, 2015. "Plug-in electric vehicle market penetration and incentives: a global review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 777-795, June.
    6. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    7. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    8. Vassileva, Iana & Campillo, Javier, 2017. "Adoption barriers for electric vehicles: Experiences from early adopters in Sweden," Energy, Elsevier, vol. 120(C), pages 632-641.
    9. Vergis, Sydney & Turrentine, Thomas S. & Fulton, Lewis & Fulton, Elizabeth, 2014. "Plug-In Electric Vehicles: A Case Study of Seven Markets," Institute of Transportation Studies, Working Paper Series qt5ps3z0f5, Institute of Transportation Studies, UC Davis.
    10. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    11. Xunmin Ou & Xiliang Zhang & Xu Zhang & Qian Zhang, 2013. "Life Cycle GHG of NG-Based Fuel and Electric Vehicle in China," Energies, MDPI, vol. 6(5), pages 1-19, May.
    12. Onat, Nuri C. & Noori, Mehdi & Kucukvar, Murat & Zhao, Yang & Tatari, Omer & Chester, Mikhail, 2017. "Exploring the suitability of electric vehicles in the United States," Energy, Elsevier, vol. 121(C), pages 631-642.
    13. Du, Jiuyu & Ouyang, Minggao & Chen, Jingfu, 2017. "Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality," Energy, Elsevier, vol. 120(C), pages 584-596.
    14. Jaguemont, J. & Boulon, L. & Dubé, Y., 2016. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures," Applied Energy, Elsevier, vol. 164(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeed, Abubakr & Riaz, Hammad & Baloch, Muhammad Saad, 2022. "Institutional voids, liability of origin, and presence of women in TMT of emerging market multinationals," International Business Review, Elsevier, vol. 31(4).
    2. Wang, Kai-Hua & Su, Chi-Wei & Xiao, Yidong & Liu, Lu, 2022. "Is the oil price a barometer of China's automobile market? From a wavelet-based quantile-on-quantile regression perspective," Energy, Elsevier, vol. 240(C).
    3. Baodi Zhang & Fuyuan Yang & Lan Teng & Minggao Ouyang & Kunfang Guo & Weifeng Li & Jiuyu Du, 2019. "Comparative Analysis of Technical Route and Market Development for Light-Duty PHEV in China and the US," Energies, MDPI, vol. 12(19), pages 1-23, September.
    4. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    5. Wang, Sinan & Chen, Kangda & Zhao, Fuquan & Hao, Han, 2019. "Technology pathways for complying with Corporate Average Fuel Consumption regulations up to 2030: A case study of China," Applied Energy, Elsevier, vol. 241(C), pages 257-277.
    6. Harvey, L.D. Danny, 2020. "Rethinking electric vehicle subsidies, rediscovering energy efficiency," Energy Policy, Elsevier, vol. 146(C).
    7. Xu Hao & Yan Zhou & Hewu Wang & Minggao Ouyang, 2020. "Plug-in electric vehicles in China and the USA: a technology and market comparison," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 329-353, March.
    8. Saeed, Abubakr & Baloch, Muhammad Saad & Liedong, Tahiru Azaaviele & Rajwani, Tazeeb, 2024. "Board gender diversity, nonmarket strategy and firm performance: Evidence from emerging markets MNCs," Research in International Business and Finance, Elsevier, vol. 71(C).
    9. Luo, Qi & Yin, Yunlei & Chen, Pengyu & Zhan, Zhenfei & Saigal, Romesh, 2022. "Dynamic subsidies for synergistic development of charging infrastructure and electric vehicle adoption," Transport Policy, Elsevier, vol. 129(C), pages 117-136.
    10. Bizhong Xia & Fan Liu & Chao Xu & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Wei Wang, 2020. "Experimental and Simulation Modal Analysis of a Prismatic Battery Module," Energies, MDPI, vol. 13(8), pages 1-16, April.
    11. Wen, W. & Yang, S. & Zhou, P. & Gao, S.Z., 2021. "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    2. Ziwen Ling & Christopher R. Cherry & Yi Wen, 2021. "Determining the Factors That Influence Electric Vehicle Adoption: A Stated Preference Survey Study in Beijing, China," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    3. Li, Yaoming & Zhang, Qi & Liu, Boyu & McLellan, Benjamin & Gao, Yuan & Tang, Yanyan, 2018. "Substitution effect of New-Energy Vehicle Credit Program and Corporate Average Fuel Consumption Regulation for Green-car Subsidy," Energy, Elsevier, vol. 152(C), pages 223-236.
    4. Wang, Sinan & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2018. "Impacts of a super credit policy on electric vehicle penetration and compliance with China's Corporate Average Fuel Consumption regulation," Energy, Elsevier, vol. 155(C), pages 746-762.
    5. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    6. Zhu, Lijing & Wang, Peize & Zhang, Qi, 2019. "Indirect network effects in China’s electric vehicle diffusion under phasing out subsidies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Zixuan Wang & Xiuzhang Li, 2021. "Demand Subsidy versus Production Regulation: Development of New Energy Vehicles in a Competitive Environment," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
    8. Wu, Tian & Shang, Zhe & Tian, Xin & Wang, Shouyang, 2016. "How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles," Energy Policy, Elsevier, vol. 97(C), pages 400-413.
    9. Du, Jiuyu & Ouyang, Minggao & Chen, Jingfu, 2017. "Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality," Energy, Elsevier, vol. 120(C), pages 584-596.
    10. Sun, Lishan & Huang, Yuchen & Liu, Shuli & Chen, Yanyan & Yao, Liya & Kashyap, Anil, 2017. "A completive survey study on the feasibility and adaptation of EVs in Beijing, China," Applied Energy, Elsevier, vol. 187(C), pages 128-139.
    11. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    12. Ramos-Real, Francisco J. & Ramírez-Díaz, Alfredo & Marrero, Gustavo A. & Perez, Yannick, 2018. "Willingness to pay for electric vehicles in island regions: The case of Tenerife (Canary Islands)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 140-149.
    13. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    14. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    15. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    16. Wen, W. & Yang, S. & Zhou, P. & Gao, S.Z., 2021. "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).
    18. Pei, Huanxin & Hu, Xiaosong & Yang, Yalian & Tang, Xiaolin & Hou, Cong & Cao, Dongpu, 2018. "Configuration optimization for improving fuel efficiency of power split hybrid powertrains with a single planetary gear," Applied Energy, Elsevier, vol. 214(C), pages 103-116.
    19. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    20. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:910-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.