IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1711-d341307.html
   My bibliography  Save this article

Design Method of Dual Active Bridge Converters for Photovoltaic Systems with High Voltage Gain

Author

Listed:
  • Elkin Edilberto Henao-Bravo

    (Departamento de Mecatrónica y Electromecánica, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia)

  • Carlos Andrés Ramos-Paja

    (Facultad de Minas, Universidad Nacional de Colombia, Medellín 050041, Colombia)

  • Andrés Julián Saavedra-Montes

    (Facultad de Minas, Universidad Nacional de Colombia, Medellín 050041, Colombia)

  • Daniel González-Montoya

    (Departamento de Electrónica y Telecomunicaciones, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia)

  • Julián Sierra-Pérez

    (Escuela de Ingenierías, Universidad Pontificia Bolivariana, Sede Medellín 050031, Colombia)

Abstract

In this paper, a design method for a photovoltaic system based on a dual active bridge converter and a photovoltaic module is proposed. The method is supported by analytical results and theoretical predictions, which are confirmed with circuital simulations. The analytical development, the theoretical predictions, and the validation through circuital simulations, are the main contributions of the paper. The dual active bridge converter is selected due to its high efficiency, high input and output voltages range, and high voltage-conversion ratio, which enables the interface of low-voltage photovoltaic modules with a high-voltage dc bus, such as the input of a micro-inverter. To propose the design method, the circuital analysis of the dual active bridge converter is performed to describe the general waveforms derived from the circuit behavior. Then, the analysis of the dual active bridge converter, interacting with a photovoltaic module driven by a maximum power point tracking algorithm, is used to establish the mathematical expressions for the leakage inductor current, the photovoltaic current, and the range of operation for the phase shift. The design method also provides analytical equations for both the high-frequency transformer equivalent leakage inductor and the photovoltaic side capacitor. The design method is validated through detailed circuital simulations of the whole photovoltaic system, which confirm that the maximum power of the photovoltaic module can be extracted with a correct design of the dual active bridge converter. Also, the theoretical restrictions of the photovoltaic system, such as the photovoltaic voltage and power ripples, are fulfilled with errors lower than 2% with respect to the circuital simulations. Finally, the simulation results also demonstrate that the maximum power point for different environmental conditions is reached, optimizing the phase shift factor with a maximum power point tracking algorithm.

Suggested Citation

  • Elkin Edilberto Henao-Bravo & Carlos Andrés Ramos-Paja & Andrés Julián Saavedra-Montes & Daniel González-Montoya & Julián Sierra-Pérez, 2020. "Design Method of Dual Active Bridge Converters for Photovoltaic Systems with High Voltage Gain," Energies, MDPI, vol. 13(7), pages 1-31, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1711-:d:341307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, Jubaer & Salam, Zainal, 2015. "An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency," Applied Energy, Elsevier, vol. 150(C), pages 97-108.
    2. Mamarelis, Emilio & Petrone, Giovanni & Spagnuolo, Giovanni, 2014. "A two-steps algorithm improving the P&O steady state MPPT efficiency," Applied Energy, Elsevier, vol. 113(C), pages 414-421.
    3. Jeisson Vélez-Sánchez & Juan David Bastidas-Rodríguez & Carlos Andrés Ramos-Paja & Daniel González Montoya & Luz Adriana Trejos-Grisales, 2019. "A Non-Invasive Procedure for Estimating the Exponential Model Parameters of Bypass Diodes in Photovoltaic Modules," Energies, MDPI, vol. 12(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiran Bathala & Dharavath Kishan & Nagendrappa Harischandrappa, 2022. "Soft Switched Current Fed Dual Active Bridge Isolated Bidirectional Series Resonant DC-DC Converter for Energy Storage Applications," Energies, MDPI, vol. 16(1), pages 1-20, December.
    2. Saif Jamal & Jagadeesh Pasupuleti & Nur Azzammudin Rahmat & Nadia M. L. Tan, 2022. "Energy Management System for Grid-Connected Nanogrid during COVID-19," Energies, MDPI, vol. 15(20), pages 1-20, October.
    3. Rupesh Jha & Mattia Forato & Satya Prakash & Hemant Dashora & Giuseppe Buja, 2022. "An Analysis-Supported Design of a Single Active Bridge (SAB) Converter," Energies, MDPI, vol. 15(2), pages 1-22, January.
    4. Diego Alejandro Herrera-Jaramillo & Elkin Edilberto Henao-Bravo & Daniel González Montoya & Carlos Andrés Ramos-Paja & Andrés Julián Saavedra-Montes, 2021. "Control-Oriented Model of Photovoltaic Systems Based on a Dual Active Bridge Converter," Sustainability, MDPI, vol. 13(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2017. "The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system," Applied Energy, Elsevier, vol. 204(C), pages 873-886.
    2. Kebir, Anouer & Woodward, Lyne & Akhrif, Ouassima, 2019. "Real-time optimization of renewable energy sources power using neural network-based anticipative extremum-seeking control," Renewable Energy, Elsevier, vol. 134(C), pages 914-926.
    3. Suliang Ma & Mingxuan Chen & Jianwen Wu & Wenlei Huo & Lian Huang, 2016. "Augmented Nonlinear Controller for Maximum Power-Point Tracking with Artificial Neural Network in Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 9(12), pages 1-24, November.
    4. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    5. Li, Qiyu & Zhao, Shengdun & Wang, Mengqi & Zou, Zhongyue & Wang, Bin & Chen, Qixu, 2017. "An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency," Applied Energy, Elsevier, vol. 195(C), pages 523-537.
    6. Hussain Bassi & Zainal Salam & Mohd Zulkifli Ramli & Hatem Sindi & Muhyaddin Rawa, 2019. "Hardware Approach to Mitigate the Effects of Module Mismatch in a Grid-connected Photovoltaic System: A Review," Energies, MDPI, vol. 12(22), pages 1-25, November.
    7. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    8. Noureddine Bouarroudj & Djamel Boukhetala & Vicente Feliu-Batlle & Fares Boudjema & Boualam Benlahbib & Bachir Batoun, 2019. "Maximum Power Point Tracker Based on Fuzzy Adaptive Radial Basis Function Neural Network for PV-System," Energies, MDPI, vol. 12(14), pages 1-19, July.
    9. Mingxuan Chen & Suliang Ma & Haiyong Wan & Jianwen Wu & Yuan Jiang, 2018. "Distributed Control Strategy for DC Microgrids of Photovoltaic Energy Storage Systems in Off-Grid Operation," Energies, MDPI, vol. 11(10), pages 1-19, October.
    10. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Aranzazu D. Martin & Juan M. Cano & Reyes S. Herrera & Jesus R. Vazquez, 2019. "Wireless Sliding MPPT Control of Photovoltaic Systems in Distributed Generation Systems," Energies, MDPI, vol. 12(17), pages 1-16, August.
    12. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    13. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    14. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    15. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    16. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    17. Abbes Kihal & Fateh Krim & Billel Talbi & Abdelbaset Laib & Abdeslem Sahli, 2018. "A Robust Control of Two-Stage Grid-Tied PV Systems Employing Integral Sliding Mode Theory," Energies, MDPI, vol. 11(10), pages 1-21, October.
    18. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    19. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    20. Vavilapalli, Sridhar & Umashankar, S. & Sanjeevikumar, P. & Ramachandaramurthy, Vigna K. & Mihet-Popa, Lucian & Fedák, Viliam, 2018. "Three-stage control architecture for cascaded H-Bridge inverters in large-scale PV systems – Real time simulation validation," Applied Energy, Elsevier, vol. 229(C), pages 1111-1127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1711-:d:341307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.