IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p666-d726911.html
   My bibliography  Save this article

An Analysis-Supported Design of a Single Active Bridge (SAB) Converter

Author

Listed:
  • Rupesh Jha

    (School of Electrical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, India)

  • Mattia Forato

    (Electrolux Italia S.p.A., Susegana, 31025 Treviso, Italy)

  • Satya Prakash

    (Department of Electrical Engineering, Zeal College of Engineering & Research, Pune 411041, India)

  • Hemant Dashora

    (KPIT Technologies Ltd., Pune 411057, India)

  • Giuseppe Buja

    (Department of Industrial Engineering, University of Padova, 35131 Padova, Italy)

Abstract

Currently, due to its various applications, the high-performance isolated dc-dc converter is in demand. In applications where unidirectional power transfer is required, the single active bridge (SAB) is the most suitable one due to its simplicity and ease of control. The general schematic of the SAB converter consists of an active bridge and a passive bridge, which are connected through a high-frequency transformer thus isolated. The paper summarizes the behavior of this converter in its three operation modes, namely the continuous, discontinuous, and boundary modes. Later, the features of this converter, such as its input-to-output and external characteristics are discussed. Input-to-output characteristics include the variation of converter output power, voltage, and current with an input control variable i.e., phase-shift angle, whereas the external characteristic is the variation of the output voltage as a function of output current. In this discussion, the behavior of this converter in its extreme operating conditions is also examined. The features of the characteristics are elucidated with the help of suitable plots obtained in the MATLAB environment. Afterward, the specifications of a SAB converter are given and, based on the results of the analysis, a detailed design of its electrical elements is carried out. To validate the features and the design procedures presented in this paper, a prototype is developed. An element-wise loss estimation is also carried out and the efficiency of the converter has been found to be approximately equal to 93%. Lastly, the test was executed on this prototype, confirming the theoretical findings concerning this converter.

Suggested Citation

  • Rupesh Jha & Mattia Forato & Satya Prakash & Hemant Dashora & Giuseppe Buja, 2022. "An Analysis-Supported Design of a Single Active Bridge (SAB) Converter," Energies, MDPI, vol. 15(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:666-:d:726911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/666/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elkin Edilberto Henao-Bravo & Carlos Andrés Ramos-Paja & Andrés Julián Saavedra-Montes & Daniel González-Montoya & Julián Sierra-Pérez, 2020. "Design Method of Dual Active Bridge Converters for Photovoltaic Systems with High Voltage Gain," Energies, MDPI, vol. 13(7), pages 1-31, April.
    2. Qiushi Zhang & Jian Zhao & Xiaoyu Wang & Li Tong & Hang Jiang & Jinhui Zhou, 2021. "Distribution Network Hierarchically Partitioned Optimization Considering Electric Vehicle Orderly Charging with Isolated Bidirectional DC-DC Converter Optimal Efficiency Model," Energies, MDPI, vol. 14(6), pages 1-20, March.
    3. Álvaro Ojeda-Rodríguez & Pablo González-Vizuete & Joaquín Bernal-Méndez & María A. Martín-Prats, 2020. "A Survey on Bidirectional DC/DC Power Converter Topologies for the Future Hybrid and All Electric Aircrafts," Energies, MDPI, vol. 13(18), pages 1-27, September.
    4. Sara J. Ríos & Daniel J. Pagano & Kevin E. Lucas, 2021. "Bidirectional Power Sharing for DC Microgrid Enabled by Dual Active Bridge DC-DC Converter," Energies, MDPI, vol. 14(2), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saad Khan Baloch & Abdul Sattar Larik & Mukhtiar Ahmed Mahar, 2023. "Analyzing the Effectiveness of Single Active Bridge DC-DC Converter under Transient and Load Variation," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Abhay Kumar & Manuele Bertoluzzo & Rupesh Kumar Jha & Amritansh Sagar, 2023. "Analysis of Losses in Two Different Control Approaches for S-S Wireless Power Transfer Systems for Electric Vehicle," Energies, MDPI, vol. 16(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saif Jamal & Jagadeesh Pasupuleti & Nur Azzammudin Rahmat & Nadia M. L. Tan, 2022. "Energy Management System for Grid-Connected Nanogrid during COVID-19," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Basma Salah & Hany M. Hasanien & Fadia M. A. Ghali & Yasser M. Alsayed & Shady H. E. Abdel Aleem & Adel El-Shahat, 2022. "African Vulture Optimization-Based Optimal Control Strategy for Voltage Control of Islanded DC Microgrids," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
    3. Kiran Bathala & Dharavath Kishan & Nagendrappa Harischandrappa, 2022. "Soft Switched Current Fed Dual Active Bridge Isolated Bidirectional Series Resonant DC-DC Converter for Energy Storage Applications," Energies, MDPI, vol. 16(1), pages 1-20, December.
    4. Yuto Takayama & Hiroaki Yamada, 2021. "Variable DC-Link Voltage Control of Dual Active Bridge Converter in a Standalone Wind Power Generation System for High-Efficiency Battery-Discharging Operation," Energies, MDPI, vol. 14(20), pages 1-17, October.
    5. Ahmed M. Fares & Matias Kippke & Mohamed Rashed & Christian Klumpner & Serhiy Bozhko, 2021. "Development of a Smart Supercapacitor Energy Storage System for Aircraft Electric Power Systems," Energies, MDPI, vol. 14(23), pages 1-13, December.
    6. Bor-Ren Lin, 2021. "Implementation of a Resonant Converter with Topology Morphing to Achieve Bidirectional Power Flow," Energies, MDPI, vol. 14(16), pages 1-21, August.
    7. Sakda Somkun & Toshiro Sato & Viboon Chunkag & Akekachai Pannawan & Pornnipa Nunocha & Tawat Suriwong, 2021. "Performance Comparison of Ferrite and Nanocrystalline Cores for Medium-Frequency Transformer of Dual Active Bridge DC-DC Converter," Energies, MDPI, vol. 14(9), pages 1-21, April.
    8. Yajun Zhao & Wenxin Huang & Feifei Bu, 2023. "Virtual Vector-Based Direct Power Control of a Three-Phase Coupled Inductor-Based Bipolar-Output Active Rectifier for More Electric Aircraft," Energies, MDPI, vol. 16(7), pages 1-21, March.
    9. Muhammad Husnain Ashfaq & Zulfiqar Ali Memon & Muhammad Akmal Chaudhary & Muhammad Talha & Jeyraj Selvaraj & Nasrudin Abd Rahim & Muhammad Majid Hussain, 2022. "Robust Dynamic Control of Constant-Current-Source-Based Dual-Active-Bridge DC/DC Converter Used for Off-Board EV Charging," Energies, MDPI, vol. 15(23), pages 1-33, November.
    10. Diego Alejandro Herrera-Jaramillo & Elkin Edilberto Henao-Bravo & Daniel González Montoya & Carlos Andrés Ramos-Paja & Andrés Julián Saavedra-Montes, 2021. "Control-Oriented Model of Photovoltaic Systems Based on a Dual Active Bridge Converter," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    11. Daud Mustafa Minhas & Josef Meiers & Georg Frey, 2022. "Electric Vehicle Battery Storage Concentric Intelligent Home Energy Management System Using Real Life Data Sets," Energies, MDPI, vol. 15(5), pages 1-29, February.
    12. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:666-:d:726911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.