IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1698-d341116.html
   My bibliography  Save this article

Thermal Effects of Natural Gas and Syngas Co-Firing System on Heat Treatment Process in the Preheating Furnace

Author

Listed:
  • Piotr Jóźwiak

    (Thermal Processes Department, Institute of Power Engineering, 01-330 Warsaw, Poland
    Institute of Heat Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland)

  • Jarosław Hercog

    (Thermal Processes Department, Institute of Power Engineering, 01-330 Warsaw, Poland)

  • Aleksandra Kiedrzyńska

    (Thermal Processes Department, Institute of Power Engineering, 01-330 Warsaw, Poland)

  • Krzysztof Badyda

    (Institute of Heat Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland)

  • Daniela Olevano

    (Centro Sviluppo Materiali S.p.A., 00128 Rome, Italy)

Abstract

Preheating furnaces, which are commonly used in many production sectors (e.g., iron and steel), are simultaneously one of the most energy-intensive devices used in the industry. Partial replacement of natural gas with biomass-derived synthesis gas as a fuel used for heating would be an important step towards limiting industrial CO 2 emissions. The time dependent computational fluid dynamics (CFD) model of an exemplary furnace was created to evaluate whether it is possible to obtain 40% of energy from syngas combustion without deterioration of thermal parameters of the treated load. As an outcome, a promising method to organize co-firing in the furnace was indicated. The obtained results show that the co-firing method (up to 40% thermal natural gas replacement with syngas), assuming low air-to-fuel equivalence ratio (λ NG = 2.0) and even distribution of power among the furnace corners, lead to satisfactory efficiency of the heat treatment process—the heat transferred to the load exceeds 95% of the heat delivered to the load in the reference case), while carbon dioxide emission is reduced from 285.5 to 171.3 kg CO 2 /h. This study showed that it is feasible (from the heat transfer point of view) to decrease the environmental impact of the process industries by the use of renewable fuels.

Suggested Citation

  • Piotr Jóźwiak & Jarosław Hercog & Aleksandra Kiedrzyńska & Krzysztof Badyda & Daniela Olevano, 2020. "Thermal Effects of Natural Gas and Syngas Co-Firing System on Heat Treatment Process in the Preheating Furnace," Energies, MDPI, vol. 13(7), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1698-:d:341116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
    2. Jóźwiak, Piotr & Hercog, Jarosław & Kiedrzyńska, Aleksandra & Badyda, Krzysztof, 2019. "CFD analysis of natural gas substitution with syngas in the industrial furnaces," Energy, Elsevier, vol. 179(C), pages 593-602.
    3. Kalisz, Sylwester & Pronobis, Marek & Baxter, David, 2008. "Co-firing of biomass waste-derived syngas in coal power boiler," Energy, Elsevier, vol. 33(12), pages 1770-1778.
    4. Echi, Souhir & Bouabidi, Abdallah & Driss, Zied & Abid, Mohamed Salah, 2019. "CFD simulation and optimization of industrial boiler," Energy, Elsevier, vol. 169(C), pages 105-114.
    5. Fiaschi, Daniele & Carta, Riccardo, 2007. "CO2 abatement by co-firing of natural gas and biomass-derived gas in a gas turbine," Energy, Elsevier, vol. 32(4), pages 549-567.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiedrzyńska, Aleksandra & Lewtak, Robert & Świątkowski, Bartosz & Jóźwiak, Piotr & Hercog, Jarosław & Badyda, Krzysztof, 2020. "Numerical study of natural gas and low-calorific syngas co-firing in a pilot scale burner," Energy, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jóźwiak, Piotr & Hercog, Jarosław & Kiedrzyńska, Aleksandra & Badyda, Krzysztof, 2019. "CFD analysis of natural gas substitution with syngas in the industrial furnaces," Energy, Elsevier, vol. 179(C), pages 593-602.
    2. Heydar Maddah & Milad Sadeghzadeh & Mohammad Hossein Ahmadi & Ravinder Kumar & Shahaboddin Shamshirband, 2019. "Modeling and Efficiency Optimization of Steam Boilers by Employing Neural Networks and Response-Surface Method (RSM)," Mathematics, MDPI, vol. 7(7), pages 1-17, July.
    3. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    4. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    5. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    6. Jun Liu & Yuyan Zhou & Lihua Chen & Lichuan Wang, 2023. "Assessing the Impact of Climate Change on Water Usage in Typical Industrial Enterprises," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    7. Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
    8. Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
    9. David D. J. Antia, 2023. "Conversion of Waste Synthesis Gas to Desalination Catalyst at Ambient Temperatures," Waste, MDPI, vol. 1(2), pages 1-29, May.
    10. Oliveira, Guthman Palandi & Sbampato, Maria Esther & Martins, Cristiane Aparecida & Santos, Leila Ribeiro & Barreta, Luiz Gilberto & Boschi Gonçalves, Rene Francisco, 2020. "Experimental laminar burning velocity of syngas from fixed-bed downdraft biomass gasifiers," Renewable Energy, Elsevier, vol. 153(C), pages 1251-1260.
    11. Xue, Wenyuan & Lu, Yichen & Wang, Zhi & Cao, Shengxian & Sui, Mengxuan & Yang, Yuan & Li, Jiyuan & Xie, Yubin, 2024. "Reconstructing near-water-wall temperature in coal-fired boilers using improved transfer learning and hidden layer configuration optimization," Energy, Elsevier, vol. 294(C).
    12. Amirhamzeh Farajollahi & Seyed Amirhossein Hejazirad & Mohsen Rostami, 2022. "Thermodynamic modeling of a power and hydrogen generation system driven by municipal solid waste gasification," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5887-5916, April.
    13. Gunarathne, Duleeka Sandamali & Mellin, Pelle & Yang, Weihong & Pettersson, Magnus & Ljunggren, Rolf, 2016. "Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace," Applied Energy, Elsevier, vol. 170(C), pages 353-361.
    14. Di Liang & Yimin Li & Zhongning Zhou, 2022. "Numerical Study of Thermochemistry and Trace Element Behavior during the Co-Combustion of Coal and Sludge in Boiler," Energies, MDPI, vol. 15(3), pages 1-16, January.
    15. Thallam Thattai, A. & Oldenbroek, V. & Schoenmakers, L. & Woudstra, T. & Aravind, P.V., 2016. "Experimental model validation and thermodynamic assessment on high percentage (up to 70%) biomass co-gasification at the 253MWe integrated gasification combined cycle power plant in Buggenum, The Neth," Applied Energy, Elsevier, vol. 168(C), pages 381-393.
    16. Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
    17. Hend Dakhel Alhassany & Safaa Malik Abbas & Marcos Tostado-Véliz & David Vera & Salah Kamel & Francisco Jurado, 2022. "Review of Bioenergy Potential from the Agriculture Sector in Iraq," Energies, MDPI, vol. 15(7), pages 1-17, April.
    18. Chen, Wei-Hsin & Hsu, Huan-Chun & Lu, Ke-Miao & Lee, Wen-Jhy & Lin, Ta-Chang, 2011. "Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass," Energy, Elsevier, vol. 36(5), pages 3012-3021.
    19. Wang, Chang’an & Zhou, Lei & Fan, Gaofeng & Yuan, Maobo & Zhao, Lei & Tang, Guantao & Liu, Chengchang & Che, Defu, 2021. "Experimental study on ash morphology, fusibility, and mineral transformation during co-combustion of antibiotic filter residue and biomass," Energy, Elsevier, vol. 217(C).
    20. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1698-:d:341116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.