Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.117371
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Zixiang & Miao, Zhengqing, 2019. "Primary air ratio affects coal utilization mode and NOx emission in lignite pulverized boiler," Energy, Elsevier, vol. 187(C).
- Wang, Chunlin & Liu, Yang & Zheng, Song & Jiang, Aipeng, 2018. "Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process," Energy, Elsevier, vol. 153(C), pages 149-158.
- Fan, J.R. & Liang, X.H. & Chen, L.H. & Cen, K.F., 1998. "Modeling of NOx emissions from a W-shaped boiler furnace under different operating conditions," Energy, Elsevier, vol. 23(12), pages 1051-1055.
- Kuang, Min & Li, Zhengqi, 2014. "Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers," Energy, Elsevier, vol. 69(C), pages 144-178.
- Adamczyk, Wojciech P. & Bialecki, Ryszard A. & Ditaranto, Mario & Gladysz, Pawel & Haugen, Nils Erland L. & Katelbach-Wozniak, Anna & Klimanek, Adam & Sladek, Slawomir & Szlek, Andrzej & Wecel, Gabrie, 2017. "CFD modeling and thermodynamic analysis of a concept of a MILD-OXY combustion large scale pulverized coal boiler," Energy, Elsevier, vol. 140(P1), pages 1305-1315.
- Chen, Zhichao & Li, Zhengqi & Zhu, Qunyi & Jing, Jianping, 2011. "Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 709-723.
- Liu, Yacheng & Fan, Weidong & Li, Yu, 2016. "Numerical investigation of air-staged combustion emphasizing char gasification and gas temperature deviation in a large-scale, tangentially fired pulverized-coal boiler," Applied Energy, Elsevier, vol. 177(C), pages 323-334.
- Echi, Souhir & Bouabidi, Abdallah & Driss, Zied & Abid, Mohamed Salah, 2019. "CFD simulation and optimization of industrial boiler," Energy, Elsevier, vol. 169(C), pages 105-114.
- Belošević, Srdjan & Tomanović, Ivan & Crnomarković, Nenad & Milićević, Aleksandar, 2019. "Full-scale CFD investigation of gas-particle flow, interactions and combustion in tangentially fired pulverized coal furnace," Energy, Elsevier, vol. 179(C), pages 1036-1053.
- Maakala, Viljami & Järvinen, Mika & Vuorinen, Ville, 2018. "Optimizing the heat transfer performance of the recovery boiler superheaters using simulated annealing, surrogate modeling, and computational fluid dynamics," Energy, Elsevier, vol. 160(C), pages 361-377.
- Jing, Jianping & Li, Zhengqi & Zhu, Qunyi & Chen, Zhichao & Ren, Feng, 2011. "Influence of primary air ratio on flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 1206-1213.
- Tan, Peng & He, Biao & Zhang, Cheng & Rao, Debei & Li, Shengnan & Fang, Qingyan & Chen, Gang, 2019. "Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory," Energy, Elsevier, vol. 176(C), pages 429-436.
- Chen, Shinan & He, Boshu & He, Di & Cao, Yang & Ding, Guangchao & Liu, Xuan & Duan, Zhipeng & Zhang, Xin & Song, Jingge & Li, Xuezheng, 2017. "Numerical investigations on different tangential arrangements of burners for a 600 MW utility boiler," Energy, Elsevier, vol. 122(C), pages 287-300.
- Gil, Andrei V. & Zavorin, Aleksandr S. & Starchenko, Aleksandr V., 2019. "Numerical investigation of the combustion process for design and non-design coal in T-shaped boilers with swirl burners," Energy, Elsevier, vol. 186(C).
- Adamczyk, Wojciech P. & Isaac, Benjamin & Parra-Alvarez, John & Smith, Sean T. & Harris, Derek & Thornock, Jeremy N. & Zhou, Minmin & Smith, Philip J. & Żmuda, Robert, 2018. "Application of LES-CFD for predicting pulverized-coal working conditions after installation of NOx control system," Energy, Elsevier, vol. 160(C), pages 693-709.
- Bordbar, Hadi & Maximov, Alexander & Hyppänen, Timo, 2019. "Improved banded method for spectral thermal radiation in participating media with spectrally dependent wall emittance," Applied Energy, Elsevier, vol. 235(C), pages 1090-1105.
- Gu, Mingyan & Wang, Mingming & Chen, Xue & Wang, Jimin & Lin, Yuyu & Chu, Huaqiang, 2019. "Numerical study on the effect of separated over-fire air ratio on combustion characteristics and NOx emission in a 1000 MW supercritical CO2 boiler," Energy, Elsevier, vol. 175(C), pages 593-603.
- Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zeng, Lingyan & Zhu, Qunyi, 2013. "Effect of angle of arch-supplied overfire air on flow, combustion characteristics and NOx emissions of a down-fired utility boiler," Energy, Elsevier, vol. 59(C), pages 377-386.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Anastasia Islamova & Pavel Tkachenko & Nikita Shlegel & Genii Kuznetsov, 2023. "Secondary Atomization of Fuel Oil and Fuel Oil/Water Emulsion through Droplet-Droplet Collisions and Impingement on a Solid Wall," Energies, MDPI, vol. 16(2), pages 1-27, January.
- Klimenko, A. & Shlegel, N.E. & Strizhak, P.A., 2023. "Breakup of colliding droplets and particles produced by heavy fuel oil pyrolysis," Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Zixiang & Miao, Zhengqing & Shen, Xusheng & Li, Jiangtao, 2018. "Effects of momentum ratio and velocity difference on combustion performance in lignite-fired pulverized boiler," Energy, Elsevier, vol. 165(PA), pages 825-839.
- Wang, Jialin & Kuang, Min & Zhao, Xiaojuan & Wu, Haiqian & Ti, Shuguang & Chen, Chuyang & Jiao, Long, 2020. "Trends of the low-NOx and high-burnout combustion characteristics in a cascade-arch, W-shaped flame furnace regarding with the staged-air angle," Energy, Elsevier, vol. 212(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Ling, Zhongqian & Zhou, Hao & Ren, Tao, 2015. "Effect of the flue gas recirculation supply location on the heavy oil combustion and NOx emission characteristics within a pilot furnace fired by a swirl burner," Energy, Elsevier, vol. 91(C), pages 110-116.
- Chen, Xi & Zhong, Wenqi & Li, Tianyu, 2023. "Fast prediction of temperature and chemical species distributions in pulverized coal boiler using POD reduced-order modeling for CFD," Energy, Elsevier, vol. 276(C).
- Yonmo Sung & Seungtae Kim & Byunghwa Jang & Changyong Oh & Taeyun Jee & Soonil Park & Kwansic Park & Siyoul Chang, 2021. "Nitric Oxide Emission Reduction in Reheating Furnaces through Burner and Furnace Air-Staged Combustions," Energies, MDPI, vol. 14(6), pages 1-15, March.
- Wang, Qingxiang & Chen, Zhichao & Che, Miaomiao & Zeng, Lingyan & Li, Zhengqi & Song, Minhang, 2016. "Effect of different inner secondary-air vane angles on combustion characteristics of primary combustion zone for a down-fired 300-MWe utility boiler with overfire air," Applied Energy, Elsevier, vol. 182(C), pages 29-38.
- Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
- Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
- Wu, Haiqian & Kuang, Min & Wang, Jialin & Zhao, Xiaojuan & Yang, Guohua & Ti, Shuguang & Ding, Jieyi, 2020. "Lower-arch location effect on the flow field, coal combustion, and NOx formation characteristics in a cascade-arch, down-fired furnace," Applied Energy, Elsevier, vol. 268(C).
- Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
- Xue, Wenyuan & Lu, Yichen & Wang, Zhi & Cao, Shengxian & Sui, Mengxuan & Yang, Yuan & Li, Jiyuan & Xie, Yubin, 2024. "Reconstructing near-water-wall temperature in coal-fired boilers using improved transfer learning and hidden layer configuration optimization," Energy, Elsevier, vol. 294(C).
- Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
- Wu, Yixi & Wang, Ziqi & Shi, Chenli & Jin, Xiaohang & Xu, Zhengguo, 2024. "A novel data-driven approach for coal-fired boiler under deep peak shaving to predict and optimize NOx emission and heat exchange performance," Energy, Elsevier, vol. 304(C).
- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
- Chen, Zhichao & Qiao, Yanyu & Guan, Shuo & Wang, Zhenwang & Zheng, Yu & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio," Energy, Elsevier, vol. 239(PD).
- Xiao, Guolin & Gao, Xiaori & Lu, Wei & Liu, Xiaodong & Asghar, Aamer Bilal & Jiang, Liu & Jing, Wenlin, 2023. "A physically based air proportioning methodology for optimized combustion in gas-fired boilers considering both heat release and NOx emissions," Applied Energy, Elsevier, vol. 350(C).
- Qiao, Yanyu & Li, Song & Jing, Xinjing & Chen, Zhichao & Fan, Subo & Li, Zhengqi, 2022. "Combustion and NOx formation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion," Energy, Elsevier, vol. 258(C).
- Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
More about this item
Keywords
Combustion; Heavy fuel oil; Boiler; NO pollution; Burner; Simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220304783. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.