Performance of fuel-air combustion in a reheating furnace at different flowrate and inlet conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118206
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hu, Yukun & Tan, CK & Niska, John & Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Varga, Liz & Roach, Paul Alun & Wang, Chunsheng, 2019. "Modelling and simulation of steel reheating processes under oxy-fuel combustion conditions – Technical and environmental perspectives," Energy, Elsevier, vol. 185(C), pages 730-743.
- Chen, Demin & Lu, Biao & Dai, FangQin & Chen, Guang & Zhang, Xihe, 2018. "Bottleneck of slab thermal efficiency in reheating furnace based on energy apportionment model," Energy, Elsevier, vol. 150(C), pages 1058-1069.
- Liu, H. & Saffaripour, M. & Mellin, P. & Grip, C.-E. & Yang, W. & Blasiak, W., 2014. "A thermodynamic study of hot syngas impurities in steel reheating furnaces – Corrosion and interaction with oxide scales," Energy, Elsevier, vol. 77(C), pages 352-361.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang Lipo & Liu Yunpeng & Hou Yingwu & Zhang Yongshun, 2022. "Cascade relationship between flow field characteristics and smoke emissions in the industrial reheating furnace [Analysis of slab heating characteristics in a reheating furnace, energy convers]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 308-320.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Piotr Jóźwiak & Jarosław Hercog & Aleksandra Kiedrzyńska & Krzysztof Badyda & Daniela Olevano, 2020. "Thermal Effects of Natural Gas and Syngas Co-Firing System on Heat Treatment Process in the Preheating Furnace," Energies, MDPI, vol. 13(7), pages 1-15, April.
- Landfahrer, M. & Schluckner, C. & Prieler, R. & Gerhardter, H. & Zmek, T. & Klarner, J. & Hochenauer, C., 2019. "Development and application of a numerically efficient model describing a rotary hearth furnace using CFD," Energy, Elsevier, vol. 180(C), pages 79-89.
- Hu, Yukun & Tan, CK & Niska, John & Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Varga, Liz & Roach, Paul Alun & Wang, Chunsheng, 2019. "Modelling and simulation of steel reheating processes under oxy-fuel combustion conditions – Technical and environmental perspectives," Energy, Elsevier, vol. 185(C), pages 730-743.
- Jóźwiak, Piotr & Hercog, Jarosław & Kiedrzyńska, Aleksandra & Badyda, Krzysztof, 2019. "CFD analysis of natural gas substitution with syngas in the industrial furnaces," Energy, Elsevier, vol. 179(C), pages 593-602.
- Gunarathne, Duleeka Sandamali & Mellin, Pelle & Yang, Weihong & Pettersson, Magnus & Ljunggren, Rolf, 2016. "Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace," Applied Energy, Elsevier, vol. 170(C), pages 353-361.
- Chen, Demin & Li, Jiaqi & Wang, Zhao & Lu, Biao & Chen, Guang, 2022. "Hierarchical model to find the path reducing CO2 emissions of integrated iron and steel production," Energy, Elsevier, vol. 258(C).
- Kiedrzyńska, Aleksandra & Lewtak, Robert & Świątkowski, Bartosz & Jóźwiak, Piotr & Hercog, Jarosław & Badyda, Krzysztof, 2020. "Numerical study of natural gas and low-calorific syngas co-firing in a pilot scale burner," Energy, Elsevier, vol. 211(C).
- Wachter, Philipp & Gaber, Christian & Demuth, Martin & Hochenauer, Christoph, 2020. "Experimental investigation of tri-reforming on a stationary, recuperative TCR-reformer applied to an oxy-fuel combustion of natural gas, using a Ni-catalyst," Energy, Elsevier, vol. 212(C).
- Schmitz, N. & Sankowski, L. & Kaiser, F. & Schwotzer, C. & Echterhof, T. & Pfeifer, H., 2021. "Towards CO2-neutral process heat generation for continuous reheating furnaces in steel hot rolling mills – A case study," Energy, Elsevier, vol. 224(C).
More about this item
Keywords
Reheating furnace; Fuel-air combustion; Slab; Walking beam; Burner;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s036054422031313x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.