IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1143-d328001.html
   My bibliography  Save this article

The Follow-up Photobioreactor Illumination System for the Cultivation of Photosynthetic Microorganisms

Author

Listed:
  • Beata Brzychczyk

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 120, 30-149 Krakow, Poland)

  • Tomasz Hebda

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 120, 30-149 Krakow, Poland)

  • Jakub Fitas

    (Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 120, 30-149 Krakow, Poland)

  • Jan Giełżecki

    (Department of Production Organization and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Krakow, ul. Balicka 120, 30-149 Krakow, Poland)

Abstract

The article presents the basic conceptual assumptions of a photobioreactor with a complementary lighting system. The cylindrical bioreactor has three independent, interconnected, and fully controlled lighting systems. A characteristic feature is the combination of the lighting system with the measurement of photosynthetically active PAR (photosynthetically active radiation) and the optical density of the culture medium. The entire lighting system is based on RGBW (“red, green, blue, white”) LED and RBG (“red, green, blue”) LEDs. The pilot study was conducted on a simplified prototype of a photobioreactor designed for the distribution and optimization of light in algae cultures designed for energy purposes. The study was carried out on microalgae Chlorella Vulgaris BA0002a from the collection of marine algae cultures.

Suggested Citation

  • Beata Brzychczyk & Tomasz Hebda & Jakub Fitas & Jan Giełżecki, 2020. "The Follow-up Photobioreactor Illumination System for the Cultivation of Photosynthetic Microorganisms," Energies, MDPI, vol. 13(5), pages 1-9, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1143-:d:328001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    2. Singh, R.N. & Sharma, Shaishav, 2012. "Development of suitable photobioreactor for algae production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2347-2353.
    3. Ding, Lingkan & Chan Gutierrez, Enrique & Cheng, Jun & Xia, Ao & O'Shea, Richard & Guneratnam, Amita Jacob & Murphy, Jerry D., 2018. "Assessment of continuous fermentative hydrogen and methane co-production using macro- and micro-algae with increasing organic loading rate," Energy, Elsevier, vol. 151(C), pages 760-770.
    4. Ferreira, L.S. & Rodrigues, M.S. & Converti, A. & Sato, S. & Carvalho, J.C.M., 2012. "Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: Use of no-cost CO2 from ethanol fermentation," Applied Energy, Elsevier, vol. 92(C), pages 379-385.
    5. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    6. Muhammad Aminul Islam & Marie Magnusson & Richard J. Brown & Godwin A. Ayoko & Md. Nurun Nabi & Kirsten Heimann, 2013. "Microalgal Species Selection for Biodiesel Production Based on Fuel Properties Derived from Fatty Acid Profiles," Energies, MDPI, vol. 6(11), pages 1-27, October.
    7. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
    8. Richard Ahorsu & Francesc Medina & Magda Constantí, 2018. "Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review," Energies, MDPI, vol. 11(12), pages 1-19, December.
    9. Seyed Hosseini, Nekoo & Shang, Helen & Scott, John Ashley, 2018. "Optimization of microalgae-sourced lipids production for biodiesel in a top-lit gas-lift bioreactor using response surface methodology," Energy, Elsevier, vol. 146(C), pages 47-56.
    10. Zhang, Yuejin & Bao, Keting & Wang, Juan & Zhao, Yongjun & Hu, Changwei, 2017. "Performance of mixed LED light wavelengths on nutrient removal and biogas upgrading by different microalgal-based treatment technologies," Energy, Elsevier, vol. 130(C), pages 392-401.
    11. Giorgos Markou & Irini Angelidaki & Elias Nerantzis & Dimitris Georgakakis, 2013. "Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) p latensis," Energies, MDPI, vol. 6(8), pages 1-14, August.
    12. Daniel T. Mohler & Michael H. Wilson & Zhen Fan & John G. Groppo & Mark Crocker, 2019. "Beneficial Reuse of Industrial CO 2 Emissions Using a Microalgae Photobioreactor: Waste Heat Utilization Assessment," Energies, MDPI, vol. 12(13), pages 1-18, July.
    13. Wijayanta, Agung Tri & Aziz, Muhammad, 2019. "Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis," Energy, Elsevier, vol. 174(C), pages 331-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    2. Sathinathan, P. & Parab, H.M. & Yusoff, R. & Ibrahim, S. & Vello, V. & Ngoh, G.C., 2023. "Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Beata Brzychczyk & Jan Giełżecki & Krzysztof Kijanowski & Tomasz Hebda & Filip Rzepka, 2023. "Automation of the Photobioreactor Lighting System to Manage Light Distribution in Microalgae Cultures," Energies, MDPI, vol. 16(20), pages 1-20, October.
    4. Marcin Zieliński & Marcin Dębowski & Joanna Kazimierowicz & Izabela Świca, 2023. "Microalgal Carbon Dioxide (CO 2 ) Capture and Utilization from the European Union Perspective," Energies, MDPI, vol. 16(3), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    2. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    3. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.
    5. Beata Brzychczyk & Jan Giełżecki & Krzysztof Kijanowski & Tomasz Hebda & Filip Rzepka, 2023. "Automation of the Photobioreactor Lighting System to Manage Light Distribution in Microalgae Cultures," Energies, MDPI, vol. 16(20), pages 1-20, October.
    6. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    7. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.
    8. Liu, Guangmin & Qiao, Lina & Zhang, Hong & Zhao, Dan & Su, Xudong, 2014. "The effects of illumination factors on the growth and HCO3− fixation of microalgae in an experiment culture system," Energy, Elsevier, vol. 78(C), pages 40-47.
    9. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    10. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    11. Thomas Buckley Imhoff & Savvas Gkantonas & Epaminondas Mastorakos, 2021. "Analysing the Performance of Ammonia Powertrains in the Marine Environment," Energies, MDPI, vol. 14(21), pages 1-41, November.
    12. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    13. Zane Vincevica-Gaile & Varvara Sachpazidou & Valdis Bisters & Maris Klavins & Olga Anne & Inga Grinfelde & Emil Hanc & William Hogland & Muhammad Asim Ibrahim & Yahya Jani & Mait Kriipsalu & Divya Pal, 2022. "Applying Macroalgal Biomass as an Energy Source: Utility of the Baltic Sea Beach Wrack for Thermochemical Conversion," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    14. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    15. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Jiseok Hong & Changwon Chae & Hyunjoong Kim & Hyeokjun Kwon & Jisu Kim & Ijung Kim, 2023. "Investigation to Enhance Solid Fuel Quality in Torrefaction of Cow Manure," Energies, MDPI, vol. 16(11), pages 1-13, June.
    17. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Rafał Łukajtis & Piotr Rybarczyk & Karolina Kucharska & Donata Konopacka-Łyskawa & Edyta Słupek & Katarzyna Wychodnik & Marian Kamiński, 2018. "Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis," Energies, MDPI, vol. 11(4), pages 1-27, April.
    19. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    20. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1143-:d:328001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.