IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v92y2012icp379-385.html
   My bibliography  Save this article

Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: Use of no-cost CO2 from ethanol fermentation

Author

Listed:
  • Ferreira, L.S.
  • Rodrigues, M.S.
  • Converti, A.
  • Sato, S.
  • Carvalho, J.C.M.

Abstract

The present study aimed at evaluating the production of Arthrospira platensis in tubular photobioreactor using CO2 from ethanol fermentation. The results of these cultivations were compared to those obtained using CO2 from cylinder at different protocols of simultaneous ammonium sulfate and sodium nitrate feeding. Maximum cell concentration (Xm), cell productivity (Px), nitrogen-to-cell conversion factor (YX/N), and biomass composition (total lipids and proteins) were selected as responses and evaluated by analysis of variance. The source of CO2 did not exert any significant statistical influence on these responses, which means that the flue gas from ethanol fermentation could successfully be used as a carbon source as well as to control the medium pH, thus contributing to reduce the greenhouse effect. The results taken as a whole demonstrated that the best combination of responses mean values (Xm=4.543gL−1; Px=0.460gL−1d−1; YX/N=15.6gg−1; total lipids=8.39%; total proteins=18.7%) was obtained using as nitrogen source a mixture of 25% NaNO3 and 75% (NH4)2SO4, both expressed as nitrogen.

Suggested Citation

  • Ferreira, L.S. & Rodrigues, M.S. & Converti, A. & Sato, S. & Carvalho, J.C.M., 2012. "Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: Use of no-cost CO2 from ethanol fermentation," Applied Energy, Elsevier, vol. 92(C), pages 379-385.
  • Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:379-385
    DOI: 10.1016/j.apenergy.2011.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Chunxiang & Ma, Xiaoqian & Liu, Kai, 2011. "Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations," Applied Energy, Elsevier, vol. 88(9), pages 3189-3196.
    2. Markou, Giorgos & Georgakakis, Dimitris, 2011. "Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review," Applied Energy, Elsevier, vol. 88(10), pages 3389-3401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    2. Beata Brzychczyk & Tomasz Hebda & Jakub Fitas & Jan Giełżecki, 2020. "The Follow-up Photobioreactor Illumination System for the Cultivation of Photosynthetic Microorganisms," Energies, MDPI, vol. 13(5), pages 1-9, March.
    3. Mayer, Flávio Dias & Feris, Liliana Amaral & Marcilio, Nilson Romeu & Hoffmann, Ronaldo, 2015. "Why small-scale fuel ethanol production in Brazil does not take off?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 687-701.
    4. Sathinathan, P. & Parab, H.M. & Yusoff, R. & Ibrahim, S. & Vello, V. & Ngoh, G.C., 2023. "Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Oncel, Suphi S., 2013. "Microalgae for a macroenergy world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 241-264.
    6. Chang, Yuanyuan & Wu, Zucheng & Bian, Lei & Feng, Daolun & Leung, Dennis Y.C., 2013. "Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine," Applied Energy, Elsevier, vol. 102(C), pages 427-431.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    2. Selvaratnam, T. & Henkanatte-Gedera, S.M. & Muppaneni, T. & Nirmalakhandan, N. & Deng, S. & Lammers, P.J., 2016. "Maximizing recovery of energy and nutrients from urban wastewaters," Energy, Elsevier, vol. 104(C), pages 16-23.
    3. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
    4. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    5. Wu, Keng-Tung & Tsai, Chia-Ju & Chen, Chih-Shen & Chen, Hsiao-Wei, 2012. "The characteristics of torrefied microalgae," Applied Energy, Elsevier, vol. 100(C), pages 52-57.
    6. Watanabe, Hideo & Li, Dalin & Nakagawa, Yoshinao & Tomishige, Keiichi & Kaya, Kunimitsu & Watanabe, Makoto M., 2014. "Characterization of oil-extracted residue biomass of Botryococcus braunii as a biofuel feedstock and its pyrolytic behavior," Applied Energy, Elsevier, vol. 132(C), pages 475-484.
    7. Dessì, Federica & Mureddu, Mauro & Ferrara, Francesca & Fermoso, Javier & Orsini, Alessandro & Sanna, Aimaro & Pettinau, Alberto, 2021. "Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion," Energy, Elsevier, vol. 217(C).
    8. Söyler, Nejmi & Goldfarb, Jillian L. & Ceylan, Selim & Saçan, Melek Türker, 2017. "Renewable fuels from pyrolysis of Dunaliella tertiolecta: An alternative approach to biochemical conversions of microalgae," Energy, Elsevier, vol. 120(C), pages 907-914.
    9. Larissa Souza Passos & Éryka Costa Almeida & Claudio Martin Pereira de Pereira & Alessandro Alberto Casazza & Attilio Converti & Ernani Pinto, 2021. "Chemical Characterization of Microcystis aeruginosa for Feed and Energy Uses," Energies, MDPI, vol. 14(11), pages 1-12, May.
    10. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    11. Jacob, Amita & Xia, Ao & Murphy, Jerry D., 2015. "A perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant," Applied Energy, Elsevier, vol. 148(C), pages 396-402.
    12. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    13. Chen, Wan-Ting & Zhang, Yuanhui & Zhang, Jixiang & Schideman, Lance & Yu, Guo & Zhang, Peng & Minarick, Mitchell, 2014. "Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil," Applied Energy, Elsevier, vol. 128(C), pages 209-216.
    14. Yu, Yan & Lau, Anthony & Sokhansanj, Shahabaddine, 2022. "Hydrothermal carbonization and pelletization of moistened wheat straw," Renewable Energy, Elsevier, vol. 190(C), pages 1018-1028.
    15. Dong, Xinyuan & Wang, Zhixing & Zhang, Junhong & Zhan, Wenlong & Gao, Lihua & He, Zhijun, 2024. "Synthesis and characteristics of carbon-based synfuel from biomass and coal powder by synergistic co-carbonization technology," Renewable Energy, Elsevier, vol. 227(C).
    16. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    17. Peter, Angela Paul & Koyande, Apurav Krishna & Chew, Kit Wayne & Ho, Shih-Hsin & Chen, Wei-Hsin & Chang, Jo-Shu & Krishnamoorthy, Rambabu & Banat, Fawzi & Show, Pau Loke, 2022. "Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Zou, Huihuang & Liu, Chao & Evrendilek, Fatih & He, Yao & Liu, Jingyong, 2021. "Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres," Renewable Energy, Elsevier, vol. 171(C), pages 1327-1343.
    19. Rizzo, Andrea Maria & Prussi, Matteo & Bettucci, Lorenzo & Libelli, Ilaria Marsili & Chiaramonti, David, 2013. "Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior," Applied Energy, Elsevier, vol. 102(C), pages 24-31.
    20. Zhu, L.D. & Hiltunen, E. & Antila, E. & Zhong, J.J. & Yuan, Z.H. & Wang, Z.M., 2014. "Microalgal biofuels: Flexible bioenergies for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1035-1046.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:92:y:2012:i:c:p:379-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.