IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p852-d321046.html
   My bibliography  Save this article

Theoretical and Numerical Study of a Photovoltaic System with Active Fluid Cooling by a Fully-Coupled 3D Thermal and Electric Model

Author

Listed:
  • Antonio D’Angola

    (Scuola di Ingegneria SI-UniBas, Università della Basilicata, via dell’Ateneo Lucano, 10, 85100 Potenza, Italy)

  • Diana Enescu

    (Department of Electronics, Telecommunications and Energy, Valahia University of Targoviste, 130004 Dambovita, Romania)

  • Marianna Mecca

    (Scuola di Ingegneria SI-UniBas, Università della Basilicata, via dell’Ateneo Lucano, 10, 85100 Potenza, Italy)

  • Alessandro Ciocia

    (Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Paolo Di Leo

    (Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Giovanni Vincenzo Fracastoro

    (Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Filippo Spertino

    (Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

The paper deals with the three-dimensional theoretical and numerical investigation of the electrical performance of a Photovoltaic System (PV) with active fluid cooling (PVFC) in order to increase its efficiency in converting solar radiation into electricity. The paper represents a refinement of a previous study by the authors in which a one-dimensional theoretical model was presented to evaluate the best compromise, in terms of fluid flow rate, of net power gain in a cooled PV system. The PV system includes 20 modules cooled by a fluid circulating on the bottom, the piping network, and the circulating pump. The fully coupled thermal and electrical model was developed in a three-dimensional geometry and the results were discussed with respect to the one-dimensional approximation and to experimental tests. Numerical simulations show that a competitive mechanism between the power gain due to the cell temperature reduction and the power consumption of the pump exists, and that a best compromise, in terms of fluid flow rate, can be found. The optimum flow rate can be automatically calculated by using a semi-analytical approach in which irradiance and ambient temperature of the site are known and the piping network losses are fully characterized.

Suggested Citation

  • Antonio D’Angola & Diana Enescu & Marianna Mecca & Alessandro Ciocia & Paolo Di Leo & Giovanni Vincenzo Fracastoro & Filippo Spertino, 2020. "Theoretical and Numerical Study of a Photovoltaic System with Active Fluid Cooling by a Fully-Coupled 3D Thermal and Electric Model," Energies, MDPI, vol. 13(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:852-:d:321046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/852/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/852/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    2. Ali F. Murtaza & Umer Munir & Marcello Chiaberge & Paolo Di Leo & Filippo Spertino, 2018. "Variable Parameters for a Single Exponential Model of Photovoltaic Modules in Crystalline-Silicon," Energies, MDPI, vol. 11(8), pages 1-14, August.
    3. Kordzadeh, Azadeh, 2010. "The effects of nominal power of array and system head on the operation of photovoltaic water pumping set with array surface covered by a film of water," Renewable Energy, Elsevier, vol. 35(5), pages 1098-1102.
    4. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    5. Jawad Ahmad & Alessandro Ciocia & Stefania Fichera & Ali Faisal Murtaza & Filippo Spertino, 2019. "Detection of Typical Defects in Silicon Photovoltaic Modules and Application for Plants with Distributed MPPT Configuration," Energies, MDPI, vol. 12(23), pages 1-26, November.
    6. Jaemin Kim & Yujin Nam, 2019. "Study on the Cooling Effect of Attached Fins on PV Using CFD Simulation," Energies, MDPI, vol. 12(4), pages 1-12, February.
    7. Ma, Tao & Yang, Hongxing & Zhang, Yinping & Lu, Lin & Wang, Xin, 2015. "Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1273-1284.
    8. Abdolzadeh, M. & Ameri, M., 2009. "Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells," Renewable Energy, Elsevier, vol. 34(1), pages 91-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klemen Sredenšek & Sebastijan Seme & Bojan Štumberger & Miralem Hadžiselimović & Amor Chowdhury & Zdravko Praunseis, 2021. "Experimental Validation of a Dynamic Photovoltaic/Thermal Collector Model in Combination with a Thermal Energy Storage Tank," Energies, MDPI, vol. 14(23), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    2. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    3. Saxena, Ashish & Deshmukh, Sandip & Nirali, Somanath & Wani, Saurabh, 2018. "Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation," Renewable Energy, Elsevier, vol. 115(C), pages 128-138.
    4. Wang, Wei-Wei & Chen, Jun-Wen & Zhang, Chun-Yu & Yang, Hong-Fei & Ji, Xiao-Wen & Zhang, Hong-Liang & Zhao, Fu-Yun & Cai, Yang, 2024. "Green thermal management of photovoltaic panels by the absorbent hydrogel evaporative (AHE) cooling jointly with 3D porous copper foam (CF) structure," Energy, Elsevier, vol. 293(C).
    5. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    6. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    7. Zhang, Wei & Chen, Miao & Zhang, Shaofeng & Wang, Yiping, 2020. "Designation of a solar falling-film photochemical hybrid system for the decolorization of azo dyes," Energy, Elsevier, vol. 197(C).
    8. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    9. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    10. Del Pero, Claudio & Aste, Niccolò & Leonforte, Fabrizio, 2021. "The effect of rain on photovoltaic systems," Renewable Energy, Elsevier, vol. 179(C), pages 1803-1814.
    11. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.
    12. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    13. Stropnik, Rok & Stritih, Uroš, 2016. "Increasing the efficiency of PV panel with the use of PCM," Renewable Energy, Elsevier, vol. 97(C), pages 671-679.
    14. Hamed, Tareq Abu & Alshare, Aiman & El-Khalil, Hossam, 2019. "Passive cooling of building-integrated photovolatics in desert conditions: Experiment and modeling," Energy, Elsevier, vol. 170(C), pages 131-138.
    15. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    16. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    17. Khan, Sheher Yar & Waqas, Adeel & Kumar, Mahesh & Liu, Shuli & Shen, Yongliang & Chen, Tingsen & Shoaib, Muhammad & Khan, Muhammad Omair, 2024. "Experimental, numerical, and 4E assessment of photovoltaic module using macro-encapsulation of pure and nano phase change material: A comparative analysis," Energy, Elsevier, vol. 290(C).
    18. Luo, Zhenyu & Zhu, Na & Hu, Pingfang & Lei, Fei & Zhang, Yaxi, 2022. "Simulation study on performance of PV-PCM-TE system for year-round analysis," Renewable Energy, Elsevier, vol. 195(C), pages 263-273.
    19. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    20. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:852-:d:321046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.