IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics036054422400238x.html
   My bibliography  Save this article

Green thermal management of photovoltaic panels by the absorbent hydrogel evaporative (AHE) cooling jointly with 3D porous copper foam (CF) structure

Author

Listed:
  • Wang, Wei-Wei
  • Chen, Jun-Wen
  • Zhang, Chun-Yu
  • Yang, Hong-Fei
  • Ji, Xiao-Wen
  • Zhang, Hong-Liang
  • Zhao, Fu-Yun
  • Cai, Yang

Abstract

To address the problems of low power generation efficiency and low security of solar photovoltaic cells, a novel and versatile PV panel cooling strategy was proposed; which employed an absorbent hydrogel evaporative (AHE) cooling with 3D porous copper foam (CF) composite structure as an effective cooling component. By comparing natural cooling, comprehensive indoor simulated and outdoor experimental studies were conducted to explore the feasibility of enhancing the electrical output performance of PV cells. The effects of solar irradiation, environment humidity, ambient temperature and wind speed on heat transfer performance and the generated electricity power efficiency of PV with CF-AHE cooling panel were comprehensively analyzed and discussed. Present research demonstrated that the CF-AHE cooling layer of three solar irradiations (0.8, 1.0 and 1.2 sun conditions) could remove 449∼713W/m2 of heat from a photovoltaic cell, which significantly out-performed that of general cooling methodology depending on wind or buoyancy driven ventilation. The results further indicated that CF-AHE significantly reduces the cell temperature, enhancing the temperature uniformity of PV cell modules, i.e., the PV cell temperature ranges from 43–46 °C, markedly lower than the 53–66 °C observed with natural cooling. Additionally, average electrical efficiencies were enhanced by 4.69 %, 8.53 % and 12.84 % compared with that of natural cooling method, respectively. Subsequently, in the field test conducted in Wuhan city of China, current results further showed that our proposed cooling unit has boosted the power generation of PV panels by 14.01 % and reduced PV surface temperature by no less than 10 °C, simultaneously. Therefore, CF-AHE cooling structure can furnish excellent heat transfer characteristics and efficient electrical generation performance of PV panel. This research will provide valuable guidance for design of photovoltaic-AHE cooling systems and verifies the feasibility of such systems.

Suggested Citation

  • Wang, Wei-Wei & Chen, Jun-Wen & Zhang, Chun-Yu & Yang, Hong-Fei & Ji, Xiao-Wen & Zhang, Hong-Liang & Zhao, Fu-Yun & Cai, Yang, 2024. "Green thermal management of photovoltaic panels by the absorbent hydrogel evaporative (AHE) cooling jointly with 3D porous copper foam (CF) structure," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s036054422400238x
    DOI: 10.1016/j.energy.2024.130467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400238X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghasemian, Mehran & Sheikholeslami, M. & Dehghan, Maziar, 2023. "Performance improvement of photovoltaic/thermal systems by using twisted tapes in the coolant tubes with different cross-section patterns," Energy, Elsevier, vol. 279(C).
    2. Gao, Yuanzhi & Chen, Bo & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Zhang, Xiaosong, 2022. "Comparative study of various solar power generation systems integrated with nanofluid-flat heat pipe," Applied Energy, Elsevier, vol. 327(C).
    3. Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
    4. Abdolzadeh, M. & Ameri, M., 2009. "Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells," Renewable Energy, Elsevier, vol. 34(1), pages 91-96.
    5. Golzari, Soudabeh & Kasaeian, Alibakhsh & Amidpour, Majid & Nasirivatan, Shahin & Mousavi, Soroush, 2018. "Experimental investigation of the effects of corona wind on the performance of an air-cooled PV/T," Renewable Energy, Elsevier, vol. 127(C), pages 284-297.
    6. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    7. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    8. Wang, Wei-Wei & Yang, Hong-Fei & Zhang, Hong-Liang & Xu, Tian-You & Zhao, Fu-Yun & Wu, Shi-Jing, 2023. "Pulsating heat pipe and thermo-electric generator jointly applied in renewable energy exploitation: Analytical and experimental investigations," Energy, Elsevier, vol. 263(PA).
    9. Yu, Min & Chen, Fucheng & Zheng, Siming & Zhou, Jinzhi & Zhao, Xudong & Wang, Zhangyuan & Li, Guiqiang & Li, Jing & Fan, Yi & Ji, Jie & Diallo, Theirno M.O. & Hardy, David, 2019. "Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation," Applied Energy, Elsevier, vol. 256(C).
    10. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    11. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    12. Renyuan Li & Yusuf Shi & Mengchun Wu & Seunghyun Hong & Peng Wang, 2020. "Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle," Nature Sustainability, Nature, vol. 3(8), pages 636-643, August.
    13. Zhang, Hongyun & Wang, Lingling & Xi, Shaobo & Xie, Huaqing & Yu, Wei, 2021. "3D porous copper foam-based shape-stabilized composite phase change materials for high photothermal conversion, thermal conductivity and storage," Renewable Energy, Elsevier, vol. 175(C), pages 307-317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    2. Antonio D’Angola & Diana Enescu & Marianna Mecca & Alessandro Ciocia & Paolo Di Leo & Giovanni Vincenzo Fracastoro & Filippo Spertino, 2020. "Theoretical and Numerical Study of a Photovoltaic System with Active Fluid Cooling by a Fully-Coupled 3D Thermal and Electric Model," Energies, MDPI, vol. 13(4), pages 1-17, February.
    3. Zhao, Bin & Hu, Mingke & Ao, Xianze & Xuan, Qingdong & Pei, Gang, 2020. "Spectrally selective approaches for passive cooling of solar cells: A review," Applied Energy, Elsevier, vol. 262(C).
    4. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    5. Fan, Ruijin & Wan, Minghan & Zhou, Tian & Zheng, Nianben & Sun, Zhiqiang, 2024. "Graphene-enhanced phase change material systems: Minimizing optical and thermal losses for solar thermal applications," Energy, Elsevier, vol. 289(C).
    6. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    7. Saxena, Ashish & Deshmukh, Sandip & Nirali, Somanath & Wani, Saurabh, 2018. "Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation," Renewable Energy, Elsevier, vol. 115(C), pages 128-138.
    8. Salem, M.R. & Elsayed, M.M. & Abd-Elaziz, A.A. & Elshazly, K.M., 2019. "Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques," Renewable Energy, Elsevier, vol. 138(C), pages 876-890.
    9. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2023. "Performance assessment of the hybrid PV-MCHP-TE system integrated with PCM in all-day operation: A preliminary numerical investigation," Energy, Elsevier, vol. 278(PA).
    10. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    11. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    12. Yang, Li-Hao & Liang, Jyun-De & Hsu, Chien-Yeh & Yang, Tai-Her & Chen, Sih-Li, 2019. "Enhanced efficiency of photovoltaic panels by integrating a spray cooling system with shallow geothermal energy heat exchanger," Renewable Energy, Elsevier, vol. 134(C), pages 970-981.
    13. Al-Addous, Mohammad & Dalala, Zakariya & Class, Christina B. & Alawneh, Firas & Al-Taani, Hussein, 2017. "Performance analysis of off-grid PV systems in the Jordan Valley," Renewable Energy, Elsevier, vol. 113(C), pages 930-941.
    14. Ryan Bugeja & Luciano Mule’ Stagno & Ioannis Niarchos, 2023. "Full-Scale Design, Implementation and Testing of an Innovative Photovoltaic Cooling System (IPCoSy)," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    15. Sharma, S. & Micheli, L. & Chang, W. & Tahir, A.A. & Reddy, K.S. & Mallick, T.K., 2017. "Nano-enhanced Phase Change Material for thermal management of BICPV," Applied Energy, Elsevier, vol. 208(C), pages 719-733.
    16. Cengiz, Mazlum & Kayri, İsmail & Aydın, Hüseyin, 2024. "A collated overview on the evaporative cooling applications for photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    17. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    18. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    19. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    20. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s036054422400238x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.