IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v220y2021ics0360544220327973.html
   My bibliography  Save this article

Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate

Author

Listed:
  • Savvakis, Nikolaos
  • Tsoutsos, Theocharis

Abstract

The temperature of the photovoltaic systems during their operation is a crucial determinant of their energy performance, life cycle and efficiency. A modified photovoltaic system (PV + PCM system) combining a conventional photovoltaic module (PV) with a selected type of phase change material (PCM) is designed and assessed in Mediterranean climate during a year-long period. This type of analysis allowed to recognise the core operational aspects (e.g. seasonal performance, stability) of such a system and serve a deeper understanding of the potential faults and underestimations. According to the results of this study, the operating temperature difference could arise up to 26.6 °C, so the yearly power generation of the new system increases by 5.7%. The obtained results provide essential findings on the benefits of the proposed system and complement the existing literature in terms of the real field experience of this configuration’s operation.

Suggested Citation

  • Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544220327973
    DOI: 10.1016/j.energy.2020.119690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220327973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hachem, Farouk & Abdulhay, Bakri & Ramadan, Mohamad & El Hage, Hicham & El Rab, Mostafa Gad & Khaled, Mahmoud, 2017. "Improving the performance of photovoltaic cells using pure and combined phase change materials – Experiments and transient energy balance," Renewable Energy, Elsevier, vol. 107(C), pages 567-575.
    2. Schiro, Fabio & Benato, Alberto & Stoppato, Anna & Destro, Nicola, 2017. "Improving photovoltaics efficiency by water cooling: Modelling and experimental approach," Energy, Elsevier, vol. 137(C), pages 798-810.
    3. Karthick, A. & Murugavel, K. Kalidasa & Ramanan, P., 2018. "Performance enhancement of a building-integrated photovoltaic module using phase change material," Energy, Elsevier, vol. 142(C), pages 803-812.
    4. Smith, Christopher J. & Forster, Piers M. & Crook, Rolf, 2014. "Global analysis of photovoltaic energy output enhanced by phase change material cooling," Applied Energy, Elsevier, vol. 126(C), pages 21-28.
    5. Chemisana, D. & Lamnatou, Chr., 2014. "Photovoltaic-green roofs: An experimental evaluation of system performance," Applied Energy, Elsevier, vol. 119(C), pages 246-256.
    6. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    7. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    8. Kravvaritis, E.D. & Antonopoulos, K.A. & Tzivanidis, C., 2011. "Experimental determination of the effective thermal capacity function and other thermal properties for various phase change materials using the thermal delay method," Applied Energy, Elsevier, vol. 88(12), pages 4459-4469.
    9. Lo Brano, Valerio & Ciulla, Giuseppina & Piacentino, Antonio & Cardona, Fabio, 2014. "Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: Description and experimental validation," Renewable Energy, Elsevier, vol. 68(C), pages 181-193.
    10. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    11. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1342-1351.
    12. Ahmad Hasan & Sarah Josephine McCormack & Ming Jun Huang & Brian Norton, 2014. "Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics," Energies, MDPI, vol. 7(3), pages 1-14, March.
    13. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    14. Waqas, Adeel & Ji, Jie & Xu, Lijie & Ali, Majid & Zeashan, & Alvi, Jahanzeb, 2018. "Thermal and electrical management of photovoltaic panels using phase change materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 254-271.
    15. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    16. Zhao, Jiaxin & Ma, Tao & Li, Zhenpeng & Song, Aotian, 2019. "Year-round performance analysis of a photovoltaic panel coupled with phase change material," Applied Energy, Elsevier, vol. 245(C), pages 51-64.
    17. Khanna, Sourav & Reddy, K.S. & Mallick, Tapas K., 2017. "Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions," Energy, Elsevier, vol. 133(C), pages 887-899.
    18. Kazemian, Arash & Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints," Energy, Elsevier, vol. 162(C), pages 210-223.
    19. Singh, Preeti & Mudgal, Vijay & Khanna, Sourav & Mallick, Tapas K. & Reddy, K.S., 2020. "Experimental investigation of solar photovoltaic panel integrated with phase change material and multiple conductivity-enhancing-containers," Energy, Elsevier, vol. 205(C).
    20. Royo, Patricia & Ferreira, Víctor J. & López-Sabirón, Ana M. & Ferreira, Germán, 2016. "Hybrid diagnosis to characterise the energy and environmental enhancement of photovoltaic modules using smart materials," Energy, Elsevier, vol. 101(C), pages 174-189.
    21. Ma, Tao & Yang, Hongxing & Zhang, Yinping & Lu, Lin & Wang, Xin, 2015. "Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1273-1284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Foteinis, Spyros & Savvakis, Nikolaos & Tsoutsos, Theocharis, 2023. "Energy and environmental performance of photovoltaic cooling using phase change materials under the Mediterranean climate," Energy, Elsevier, vol. 265(C).
    2. Mohammed Algarni & Mashhour A. Alazwari & Mohammad Reza Safaei, 2021. "Optimization of Nano-Additive Characteristics to Improve the Efficiency of a Shell and Tube Thermal Energy Storage System Using a Hybrid Procedure: DOE, ANN, MCDM, MOO, and CFD Modeling," Mathematics, MDPI, vol. 9(24), pages 1-30, December.
    3. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).
    4. Ranawade, Vishal & Nalwa, Kanwar Singh, 2023. "Multilayered PCMs-based cooling solution for photovoltaic modules: Modelling and experimental study," Renewable Energy, Elsevier, vol. 216(C).
    5. Khan, Sheher Yar & Waqas, Adeel & Kumar, Mahesh & Liu, Shuli & Shen, Yongliang & Chen, Tingsen & Shoaib, Muhammad & Khan, Muhammad Omair, 2024. "Experimental, numerical, and 4E assessment of photovoltaic module using macro-encapsulation of pure and nano phase change material: A comparative analysis," Energy, Elsevier, vol. 290(C).
    6. B, Prabhu & A, Valan Arasu & P, Gurusamy & A, Amala Mithin Minther Singh & T, Arunkumar, 2024. "Solar photovoltaic cooling using Paraffin phase change material: Comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    7. Taqi Al-Najjar, Hussein M. & Mahdi, Jasim M., 2022. "Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system," Applied Energy, Elsevier, vol. 315(C).
    8. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Gangatharan, Sivasankar, 2024. "An experimental investigation on coalescing the potentiality of PCM, fins and water to achieve sturdy cooling effect on PV panels," Applied Energy, Elsevier, vol. 356(C).
    9. Cao, Yan & Sinaga, Nazaruddin & Pourhedayat, Samira & Dizaji, Hamed Sadighi, 2021. "Innovative integration of solar chimney ventilator, solar panel and phase change material; under real transient weather condition of Hong Kong through different months," Renewable Energy, Elsevier, vol. 174(C), pages 865-878.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    2. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    3. Adibpour, S. & Raisi, A. & Ghasemi, B. & Sajadi, A.R. & Rosengarten, G., 2021. "Experimental investigation of the performance of a sun tracking photovoltaic panel with Phase Change Material," Renewable Energy, Elsevier, vol. 165(P1), pages 321-333.
    4. Foteinis, Spyros & Savvakis, Nikolaos & Tsoutsos, Theocharis, 2023. "Energy and environmental performance of photovoltaic cooling using phase change materials under the Mediterranean climate," Energy, Elsevier, vol. 265(C).
    5. Zhao, Jiaxin & Ma, Tao & Li, Zhenpeng & Song, Aotian, 2019. "Year-round performance analysis of a photovoltaic panel coupled with phase change material," Applied Energy, Elsevier, vol. 245(C), pages 51-64.
    6. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    7. Rajvikram Madurai Elavarasan & Karthikeyan Velmurugan & Umashankar Subramaniam & A Rakesh Kumar & Dhafer Almakhles, 2020. "Experimental Investigations Conducted for the Characteristic Study of OM29 Phase Change Material and Its Incorporation in Photovoltaic Panel," Energies, MDPI, vol. 13(4), pages 1-18, February.
    8. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    9. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1342-1351.
    10. Yıldız, Çağatay & Arıcı, Müslüm & Nižetić, Sandro & Shahsavar, Amin, 2020. "Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins," Energy, Elsevier, vol. 207(C).
    11. Karami, Babak & Azimi, Neda & Ahmadi, Shahin, 2021. "Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material," Renewable Energy, Elsevier, vol. 178(C), pages 25-49.
    12. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    13. Muhammad Aftab Rafiq & Liguo Zhang & Chih-Chun Kung, 2022. "A Techno-Economic Analysis of Solar Energy Developmental Under Competing Technologies: A Case Study in Jiangxi, China," SAGE Open, , vol. 12(2), pages 21582440221, June.
    14. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    15. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    16. Karthick, A. & Murugavel, K. Kalidasa & Ramanan, P., 2018. "Performance enhancement of a building-integrated photovoltaic module using phase change material," Energy, Elsevier, vol. 142(C), pages 803-812.
    17. Rezvanpour, Mohammad & Borooghani, Danial & Torabi, Farschad & Pazoki, Maryam, 2020. "Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation," Renewable Energy, Elsevier, vol. 146(C), pages 1907-1921.
    18. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. K. B. Prakash & Manoj Kumar Pasupathi & Subramaniyan Chinnasamy & S. Saravanakumar & Murugesan Palaniappan & Abdulaziz Alasiri & M. Chandrasekaran, 2023. "Energy and Exergy Enhancement Study on PV Systems with Phase Change Material," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    20. Taqi Al-Najjar, Hussein M. & Mahdi, Jasim M., 2022. "Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system," Applied Energy, Elsevier, vol. 315(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544220327973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.