IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p691-d316907.html
   My bibliography  Save this article

Numerical Study of Lightning Protection of Wind Turbine Blade with De-Icing Electrical Heating System

Author

Listed:
  • Yang Zhao

    (School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Xi Wang

    (Electrical Engineering College, Shanghai University of Electric Power, Shanghai 200090, China)

  • Qibin Zhou

    (School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Zhenxing Wang

    (State Grid Shanghai Municipal Electric Power Company, Shanghai 200122, China)

  • Xiaoyan Bian

    (Electrical Engineering College, Shanghai University of Electric Power, Shanghai 200090, China)

Abstract

In order to solve the problem of icing on the surface of wind turbine blade, a heating system that includes a carbon fiber net (CFN) and power cables is proposed recently. When lightning strikes at the blade with a de-icing heating system, the blade and its heating system are more easily damaged due to the overvoltage between the lightning protection system (LPS) of the blade and the heating system. In this paper, the models of a wind turbine blade with the de-icing heating system are established by Alternative Transients Program/Electromagnetic Transients Program (ATP–EMTP) and the accuracy of models is verified through an experiment. With these models, the influence of lightning current, surge protective devices (SPDs) and earthing resistance of wind turbine are analyzed by calculating the voltage between the down-conductor of the LPS and the heating system. The results show that the voltage is positively correlated with lightning current amplitude and negatively correlated with the front time of lightning current. SPDs are quite useful to reduce the voltage, and an optimal installation scheme of SPDs is obtained by simulation. It is noted that voltage decreases slightly with the increasing earthing resistance with the optimal installation scheme of SPDs.

Suggested Citation

  • Yang Zhao & Xi Wang & Qibin Zhou & Zhenxing Wang & Xiaoyan Bian, 2020. "Numerical Study of Lightning Protection of Wind Turbine Blade with De-Icing Electrical Heating System," Energies, MDPI, vol. 13(3), pages 1-11, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:691-:d:316907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yibing & Xu, Yuanming & Lei, Yuyong, 2018. "An effect assessment and prediction method of ultrasonic de-icing for composite wind turbine blades," Renewable Energy, Elsevier, vol. 118(C), pages 1015-1023.
    2. Fakorede, Oloufemi & Feger, Zoé & Ibrahim, Hussein & Ilinca, Adrian & Perron, Jean & Masson, Christian, 2016. "Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 662-675.
    3. Daniliuk, Vladislav & Xu, Yuanming & Liu, Ruobing & He, Tianpeng & Wang, Xi, 2020. "Ultrasonic de-icing of wind turbine blades: Performance comparison of perspective transducers," Renewable Energy, Elsevier, vol. 145(C), pages 2005-2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
    2. Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
    3. Ruqaya Khammas & Heli Koivuluoto, 2022. "Durable Icephobic Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Flame- and Cold-Spraying," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    4. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    5. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    6. Sima Rastayesh & Lijia Long & John Dalsgaard Sørensen & Sebastian Thöns, 2019. "Risk Assessment and Value of Action Analysis for Icing Conditions of Wind Turbines Close to Highways," Energies, MDPI, vol. 12(14), pages 1-15, July.
    7. Stoyanov, D.B. & Nixon, J.D. & Sarlak, H., 2021. "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Elsevier, vol. 288(C).
    8. Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
    9. Iman Izadgoshasb & Yee Yan Lim & Ricardo Vasquez Padilla & Mohammadreza Sedighi & Jeremy Paul Novak, 2019. "Performance Enhancement of a Multiresonant Piezoelectric Energy Harvester for Low Frequency Vibrations," Energies, MDPI, vol. 12(14), pages 1-16, July.
    10. Zhijin Zhang & Hang Zhang & Xu Zhang & Qin Hu & Xingliang Jiang, 2024. "A Review of Wind Turbine Icing and Anti/De-Icing Technologies," Energies, MDPI, vol. 17(12), pages 1-34, June.
    11. Swenson, Lauren & Gao, Linyue & Hong, Jiarong & Shen, Lian, 2022. "An efficacious model for predicting icing-induced energy loss for wind turbines," Applied Energy, Elsevier, vol. 305(C).
    12. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    13. Xiao Wang & Zheng Zheng & Guoqian Jiang & Qun He & Ping Xie, 2022. "Detecting Wind Turbine Blade Icing with a Multiscale Long Short-Term Memory Network," Energies, MDPI, vol. 15(8), pages 1-19, April.
    14. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.
    15. Gao, Linyue & Liu, Yang & Ma, Liqun & Hu, Hui, 2019. "A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 140(C), pages 943-956.
    16. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    17. Wang, Qiang & Yi, Xian & Liu, Yu & Ren, Jinghao & Li, Weihao & Wang, Qiao & Lai, Qingren, 2020. "Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model," Renewable Energy, Elsevier, vol. 162(C), pages 1854-1873.
    18. Valery Okulov & Ivan Kabardin & Dmitry Mukhin & Konstantin Stepanov & Nastasia Okulova, 2021. "Physical De-Icing Techniques for Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-16, October.
    19. Wang, Yibing & Xu, Yuanming & Su, Fei, 2020. "Damage accumulation model of ice detach behavior in ultrasonic de-icing technology," Renewable Energy, Elsevier, vol. 153(C), pages 1396-1405.
    20. Fahed Martini & Leidy Tatiana Contreras Montoya & Adrian Ilinca, 2021. "Review of Wind Turbine Icing Modelling Approaches," Energies, MDPI, vol. 14(16), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:691-:d:316907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.