IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921011399.html
   My bibliography  Save this article

An efficacious model for predicting icing-induced energy loss for wind turbines

Author

Listed:
  • Swenson, Lauren
  • Gao, Linyue
  • Hong, Jiarong
  • Shen, Lian

Abstract

The wind industry in cold climates has shown strong growth in recent years, but turbine icing in these regions can cause significant energy loss leading to a reduction in reliability of wind energy. Previous studies on estimating wind turbine icing (WTI) generally rely on complex physical models, and many only model the ice growth itself while failing to correlate ice growth with energy loss. It is the estimation of icing-induced energy loss that is critical for power grid management to cope with energy deficits associated with extreme weather conditions. This study focuses on bridging this modeling gap through developing an efficacious methodology for predicting icing-induced energy losses for wind turbines in cold weather events. Specifically, this study uses measurements of 11 WTI events between 2018 and 2020 from a 2.5 MW wind turbine (Eolos site, University of Minnesota) to create a statistical correlation between meteorological conditions and icing-induced energy loss. Meteorological icing parameters generated from a Weather Research and Forecasting simulation are used as inputs to the model. The model is validated against in-situ data for all events, and against two additional 1.65 MW wind turbines for one event (Morris site, University of Minnesota). When comparing average estimated energy loss to measured loss, it shows a relative mean absolute error of 37% at Eolos and 2.9% at Morris (after power curve scaling). The new model is additionally implemented for 30 large-scale wind farms in the Midwest region of the United States for estimation of WTI energy loss. The method proposed in this study enables fast and accurate prediction of WTI energy loss for wind turbines.

Suggested Citation

  • Swenson, Lauren & Gao, Linyue & Hong, Jiarong & Shen, Lian, 2022. "An efficacious model for predicting icing-induced energy loss for wind turbines," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011399
    DOI: 10.1016/j.apenergy.2021.117809
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DeCesaro, Jennifer & Porter, Kevin & Milligan, Michael, 2009. "Wind Energy and Power System Operations: A Review of Wind Integration Studies to Date," The Electricity Journal, Elsevier, vol. 22(10), pages 34-43, December.
    2. Fakorede, Oloufemi & Feger, Zoé & Ibrahim, Hussein & Ilinca, Adrian & Perron, Jean & Masson, Christian, 2016. "Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 662-675.
    3. Jennie Molinder & Sebastian Scher & Erik Nilsson & Heiner Körnich & Hans Bergström & Anna Sjöblom, 2020. "Probabilistic Forecasting of Wind Turbine Icing Related Production Losses Using Quantile Regression Forests," Energies, MDPI, vol. 14(1), pages 1-19, December.
    4. Xiyun Yang & Tianze Ye & Qile Wang & Zhun Tao, 2020. "Diagnosis of Blade Icing Using Multiple Intelligent Algorithms," Energies, MDPI, vol. 13(11), pages 1-15, June.
    5. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    6. Dai, Juchuan & Yang, Xin & Wen, Li, 2018. "Development of wind power industry in China: A comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 156-164.
    7. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    2. Mounir Alliche & Redha Rebhi & Noureddine Kaid & Younes Menni & Houari Ameur & Mustafa Inc & Hijaz Ahmad & Giulio Lorenzini & Ayman A. Aly & Sayed K. Elagan & Bassem F. Felemban, 2021. "Estimation of the Wind Energy Potential in Various North Algerian Regions," Energies, MDPI, vol. 14(22), pages 1-13, November.
    3. Yujie Zhang & Mario Rotea & Nasser Kehtarnavaz, 2024. "Wind Farm Prediction of Icing Based on SCADA Data," Energies, MDPI, vol. 17(18), pages 1-16, September.
    4. Luo, Keyu & Ye, Yong, 2024. "How responsive are retail electricity prices to crude oil fluctuations in the US? Time-varying and asymmetric perspectives," Research in International Business and Finance, Elsevier, vol. 69(C).
    5. Yujie Zhang & Nasser Kehtarnavaz & Mario Rotea & Teja Dasari, 2024. "Prediction of Icing on Wind Turbines Based on SCADA Data via Temporal Convolutional Network," Energies, MDPI, vol. 17(9), pages 1-13, May.
    6. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Condition monitoring of wind turbine blades based on self-supervised health representation learning: A conducive technique to effective and reliable utilization of wind energy," Applied Energy, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    2. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    4. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    7. Xsitaaz T. Chadee & Naresh R. Seegobin & Ricardo M. Clarke, 2017. "Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago," Energies, MDPI, vol. 10(7), pages 1-23, July.
    8. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).
    9. Karunakaran Venkatesan & Uma Govindarajan & Padmanathan Kasinathan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Zbigniew Leonowicz, 2019. "Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique," Energies, MDPI, vol. 12(16), pages 1-26, August.
    10. Cuevas-Figueroa, Gabriel & Stansby, Peter K. & Stallard, Timothy, 2022. "Accuracy of WRF for prediction of operational wind farm data and assessment of influence of upwind farms on power production," Energy, Elsevier, vol. 254(PB).
    11. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    12. Seyed Reza Mirnezami & Amin Mohseni Cheraghlou, 2022. "Wind Power in Iran: Technical, Policy, and Financial Aspects for Better Energy Resource Management," Energies, MDPI, vol. 15(9), pages 1-18, April.
    13. Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
    14. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    15. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    16. Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    18. Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
    19. Lin, Boqiang & Qiao, Qiao, 2023. "Exploring the participation willingness and potential carbon emission reduction of Chinese residential green electricity market," Energy Policy, Elsevier, vol. 174(C).
    20. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.