IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p2069-d162696.html
   My bibliography  Save this article

Layout Optimization Design of Two Vortex Induced Piezoelectric Energy Converters (VIPECs) Using the Combined Kriging Surrogate Model and Particle Swarm Optimization Method

Author

Listed:
  • Xinyu An

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
    These authors contributed equally to this work.)

  • Baowei Song

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
    These authors contributed equally to this work.)

  • Zhaoyong Mao

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
    These authors contributed equally to this work.)

  • Congcong Ma

    (Laboratoire Roberval, Université de Technologie de Compiègne, 60200 Compiègne, France
    These authors contributed equally to this work.)

Abstract

The layout configuration of Vortex Induced Piezoelectric Energy Converters (VIPECs) is essential to improve its overall performance. Based on the formations of migrating geese, the configuration is characterized by two nondimensionalized layout parameters. A number of sampled points for different configurations are simulated with the two-dimensional Computation Fluid Dynamics (CFD) method. The influence of layout configurations on VIPECs’ lift force and wake structure is investigated and the generated open circuit output voltage is obtained through the derived output voltage equation. The response surface model of the output voltage of both the leading VIPEC and the following VIPEC and their summation are established using the Kriging surrogate model based on the obtained simulation results. Then, optimal layout parameters are found through the Particle Swarm Optimization (PSO) algorithm, and its predicted result is compared with that of the CFD simulation. The simulation and optimization results reveal that the output voltage is not always consistent with the lift force on the plate. When VIPECs are placed in parallel with a certain spacing, their overall performance increases. The summation of output voltage is predicted to improve by approximately 63.7% compared to two single VIPECs when they are placed at the optimal layout parameters.

Suggested Citation

  • Xinyu An & Baowei Song & Zhaoyong Mao & Congcong Ma, 2018. "Layout Optimization Design of Two Vortex Induced Piezoelectric Energy Converters (VIPECs) Using the Combined Kriging Surrogate Model and Particle Swarm Optimization Method," Energies, MDPI, vol. 11(8), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2069-:d:162696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/2069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/2069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahul Roy & Satchidananda Dehuri & Sung Bae Cho, 2011. "A Novel Particle Swarm Optimization Algorithm for Multi-Objective Combinatorial Optimization Problem," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 2(4), pages 41-57, October.
    2. Xinyu An & Baowei Song & Wenlong Tian & Congcong Ma, 2018. "Design and CFD Simulations of a Vortex-Induced Piezoelectric Energy Converter (VIPEC) for Underwater Environment," Energies, MDPI, vol. 11(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junjun Shi & Jingfang Shen & Yaohui Li, 2021. "High-Precision Kriging Modeling Method Based on Hybrid Sampling Criteria," Mathematics, MDPI, vol. 9(5), pages 1-25, March.
    2. Cheng Yan & Jianfeng Zhu & Xiuli Shen & Jun Fan & Dong Mi & Zhengming Qian, 2020. "Ensemble of Regression-Type and Interpolation-Type Metamodels," Energies, MDPI, vol. 13(3), pages 1-20, February.
    3. Basit Ali & Muhammad Waseem Ashraf & Shahzadi Tayyaba, 2019. "Simulation, Fuzzy Analysis and Development of ZnO Nanostructure-based Piezoelectric MEMS Energy Harvester," Energies, MDPI, vol. 12(5), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidya Chandran & Sekar M. & Sheeja Janardhanan & Varun Menon, 2018. "Numerical Study on the Influence of Mass and Stiffness Ratios on the Vortex Induced Motion of an Elastically Mounted Cylinder for Harnessing Power," Energies, MDPI, vol. 11(10), pages 1-23, September.
    2. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    3. Haider Jaafar Chilabi & Hanim Salleh & Waleed Al-Ashtari & E. E. Supeni & Luqman Chuah Abdullah & Azizan B. As’arry & Khairil Anas Md Rezali & Mohammad Khairul Azwan, 2021. "Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances," Energies, MDPI, vol. 14(11), pages 1-29, May.
    4. Anupam Mukherjee & Partha Sarathi Barma & Joydeep Dutta & Goutam Panigrahi & Samarjit Kar & Manoranjan Maiti, 2022. "A multi-objective antlion optimizer for the ring tree problem with secondary sub-depots," Operational Research, Springer, vol. 22(3), pages 1813-1851, July.
    5. Grzegorz Wieczorek & Krzysztof Bernacki & Zbigniew Rymarski & Wojciech Oliwa, 2021. "Gathering Energy of the Stray Currents in Electrified Railways Environment for Power Supply," Energies, MDPI, vol. 14(19), pages 1-19, September.
    6. Hongyuan Sun & Jiazheng Wang & Haihua Lin & Guanghua He & Zhigang Zhang & Bo Gao & Bo Jiao, 2022. "Numerical Study on a Cylinder Vibrator in the Hydrodynamics of a Wind–Wave Combined Power Generation System under Different Mass Ratios," Energies, MDPI, vol. 15(24), pages 1-16, December.
    7. Haider Jaafar Chilabi & Hanim Salleh & Eris E. Supeni & Azizan As’arry & Khairil Anas Md Rezali & Ahmed B. Atrah, 2020. "Harvesting Energy from Planetary Gear Using Piezoelectric Material," Energies, MDPI, vol. 13(1), pages 1-25, January.
    8. Emmanuel Mbondo Binyet & Jen-Yuan Chang & Chih-Yung Huang, 2020. "Flexible Plate in the Wake of a Square Cylinder for Piezoelectric Energy Harvesting—Parametric Study Using Fluid–Structure Interaction Modeling," Energies, MDPI, vol. 13(10), pages 1-29, May.
    9. Jianfeng Hong & Fu Chen & Ming He & Sheng Wang & Wenxiang Chen & Mingjie Guan, 2019. "Study of a Low-Power-Consumption Piezoelectric Energy Harvesting Circuit Based on Synchronized Switching Technology," Energies, MDPI, vol. 12(16), pages 1-13, August.
    10. Peng Liao & Jiyang Fu & Wenyong Ma & Yuan Cai & Yuncheng He, 2021. "Study on the Efficiency and Dynamic Characteristics of an Energy Harvester Based on Flexible Structure Galloping," Energies, MDPI, vol. 14(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:2069-:d:162696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.