IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2162-d123420.html
   My bibliography  Save this article

A Kriging Model Based Optimization of Active Distribution Networks Considering Loss Reduction and Voltage Profile Improvement

Author

Listed:
  • Dan Wang

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Qing’e Hu

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Jia Tang

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Hongjie Jia

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Yun Li

    (State Grid Beijing Electric Power Company, Xicheng District, Beijing 100031, China)

  • Shuang Gao

    (Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Menghua Fan

    (State Grid Energy Research Institute, Changping District, Beijing 102249, China)

Abstract

Optimal operation of the active distribution networks (ADN) is essential to keep its safety, reliability and economy. With the integration of multiple controllable resources, the distribution networks are facing more challenges in which the optimization strategy is the key. This paper establishes the optimal operation model of the ADN considering a diversity of controllable resources including energy storage devices, distributed generators, voltage regulators and switchable capacitor banks. The objective functions contain reducing the power losses and improving the voltage profiles. To solve the optimization problem, the Kriging model based Improved Surrogate Optimization-Mixed-Integer (ISO-MI) algorithm is proposed in this paper. The Kriging model is applied to approximate the complicated distribution networks, which speeds up the solving process. Finally, the accuracy of the Kriging model is validated and the efficiency among the proposed method, genetic algorithm (GA) and particle swarm optimization (PSO) is compared in an unbalanced IEEE-123 nodes test feeder. The results demonstrate that the proposed method has better performance than GA and PSO.

Suggested Citation

  • Dan Wang & Qing’e Hu & Jia Tang & Hongjie Jia & Yun Li & Shuang Gao & Menghua Fan, 2017. "A Kriging Model Based Optimization of Active Distribution Networks Considering Loss Reduction and Voltage Profile Improvement," Energies, MDPI, vol. 10(12), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2162-:d:123420
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Di Silvestre, M.L. & La Cascia, D. & Riva Sanseverino, E. & Zizzo, G., 2016. "Improving the energy efficiency of an islanded distribution network using classical and innovative computation methods," Utilities Policy, Elsevier, vol. 40(C), pages 58-66.
    2. Matthieu Petelet & Bertrand Iooss & Olivier Asserin & Alexandre Loredo, 2010. "Latin hypercube sampling with inequality constraints," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(4), pages 325-339, December.
    3. Niknam, Taher & Firouzi, Bahman Bahmani & Ostadi, Amir, 2010. "A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators," Applied Energy, Elsevier, vol. 87(6), pages 1919-1928, June.
    4. Ippolito, M.G. & Di Silvestre, M.L. & Riva Sanseverino, E. & Zizzo, G. & Graditi, G., 2014. "Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios," Energy, Elsevier, vol. 64(C), pages 648-662.
    5. Niknam, Taher & Mojarrad, Hasan Doagou & Meymand, Hamed Zeinoddini & Firouzi, Bahman Bahmani, 2011. "A new honey bee mating optimization algorithm for non-smooth economic dispatch," Energy, Elsevier, vol. 36(2), pages 896-908.
    6. Manbachi, M. & Sadu, A. & Farhangi, H. & Monti, A. & Palizban, A. & Ponci, F. & Arzanpour, S., 2016. "Impact of EV penetration on Volt–VAR Optimization of distribution networks using real-time co-simulation monitoring platform," Applied Energy, Elsevier, vol. 169(C), pages 28-39.
    7. Tang, Jia & Wang, Dan & Wang, Xuyang & Jia, Hongjie & Wang, Chengshan & Huang, Renle & Yang, Zhanyong & Fan, Menghua, 2017. "Study on day-ahead optimal economic operation of active distribution networks based on Kriging model assisted particle swarm optimization with constraint handling techniques," Applied Energy, Elsevier, vol. 204(C), pages 143-162.
    8. Manbachi, Moein & Farhangi, Hassan & Palizban, Ali & Arzanpour, Siamak, 2016. "Smart grid adaptive energy conservation and optimization engine utilizing Particle Swarm Optimization and Fuzzification," Applied Energy, Elsevier, vol. 174(C), pages 69-79.
    9. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    10. Mazidi, Mohammadreza & Monsef, Hassan & Siano, Pierluigi, 2016. "Robust day-ahead scheduling of smart distribution networks considering demand response programs," Applied Energy, Elsevier, vol. 178(C), pages 929-942.
    11. Wang, Xiaonan & Palazoglu, Ahmet & El-Farra, Nael H., 2015. "Operational optimization and demand response of hybrid renewable energy systems," Applied Energy, Elsevier, vol. 143(C), pages 324-335.
    12. Ghasemi, Ahmad & Mortazavi, Seyed Saeidollah & Mashhour, Elaheh, 2016. "Hourly demand response and battery energy storage for imbalance reduction of smart distribution company embedded with electric vehicles and wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 124-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Yan & Jianfeng Zhu & Xiuli Shen & Jun Fan & Dong Mi & Zhengming Qian, 2020. "Ensemble of Regression-Type and Interpolation-Type Metamodels," Energies, MDPI, vol. 13(3), pages 1-20, February.
    2. Yunqi Xiao & Yi Wang & Yanping Sun, 2018. "Reactive Power Optimal Control of a Wind Farm for Minimizing Collector System Losses," Energies, MDPI, vol. 11(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Jia & Wang, Dan & Wang, Xuyang & Jia, Hongjie & Wang, Chengshan & Huang, Renle & Yang, Zhanyong & Fan, Menghua, 2017. "Study on day-ahead optimal economic operation of active distribution networks based on Kriging model assisted particle swarm optimization with constraint handling techniques," Applied Energy, Elsevier, vol. 204(C), pages 143-162.
    2. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    5. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    6. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2018. "A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks," Applied Energy, Elsevier, vol. 228(C), pages 2024-2036.
    7. Curto, Domenico & Favuzza, Salvatore & Franzitta, Vincenzo & Guercio, Andrea & Amparo Navarro Navia, Milagros & Telaretti, Enrico & Zizzo, Gaetano, 2022. "Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands," Energy, Elsevier, vol. 254(PC).
    8. Manbachi, Moein & Farhangi, Hassan & Palizban, Ali & Arzanpour, Siamak, 2016. "Smart grid adaptive energy conservation and optimization engine utilizing Particle Swarm Optimization and Fuzzification," Applied Energy, Elsevier, vol. 174(C), pages 69-79.
    9. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
    10. Sharifi, R. & Fathi, S.H. & Vahidinasab, V., 2017. "A review on Demand-side tools in electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 565-572.
    11. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    12. Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
    13. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    14. Tengku Juhana Tengku Hashim & Azah Mohamed, 2017. "Optimal coordinated voltage control in active distribution networks using backtracking search algorithm," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-20, October.
    15. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    16. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    17. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    18. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    19. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    20. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2162-:d:123420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.