IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p635-d315808.html
   My bibliography  Save this article

Critical Analysis of Process Integration Options for Joule-Cycle and Conventional Heat Pumps

Author

Listed:
  • Limei Gai

    (Sustainable Process Integration Laboratory-SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology-VUT Brno, Technická 2896/2, 61600 Brno, Czech Republic)

  • Petar Sabev Varbanov

    (Sustainable Process Integration Laboratory-SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology-VUT Brno, Technická 2896/2, 61600 Brno, Czech Republic)

  • Timothy Gordon Walmsley

    (Sustainable Energy and Water Systems Group, School of Engineering, The University of Waikato, Hamilton 3216, New Zealand)

  • Jiří Jaromír Klemeš

    (Sustainable Process Integration Laboratory-SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology-VUT Brno, Technická 2896/2, 61600 Brno, Czech Republic)

Abstract

To date, research on heat pumps (HP) has mainly focused on vapour compression heat pumps (VCHP), transcritical heat pumps (TCHP), absorption heat pumps, and their heat integration with processes. Few studies have considered the Joule cycle heat pump (JCHP), which raises several questions. What are the characteristics and specifics of these different heat pumps? How are they different when they integrate with the processes? For different processes, which heat pump is more appropriate? To address these questions, the performance and integration of different types of heat pumps with various processes have been studied through Pinch Methodology. The results show that different heat pumps have their own optimal application range. The new JCHP is suitable for processes in which the temperature changes of source and sink are both massive. The VCHP is more suitable for the source and sink temperatures, which are near-constant. The TCHP is more suitable for sources with small temperature changes and sinks with large temperature changes. This study develops an approach that provides guidance for the selection of heat pumps by applying Process Integration to various combinations of heat pump types and processes. It is shown that the correct choice of heat pump type for each application is of utmost importance, as the Coefficient of Performance can be improved by up to an order of magnitude. By recovering and upgrading process waste heat, heat pumps can save 15–78% of the hot utility depending on the specific process.

Suggested Citation

  • Limei Gai & Petar Sabev Varbanov & Timothy Gordon Walmsley & Jiří Jaromír Klemeš, 2020. "Critical Analysis of Process Integration Options for Joule-Cycle and Conventional Heat Pumps," Energies, MDPI, vol. 13(3), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:635-:d:315808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oluleye, Gbemi & Jiang, Ning & Smith, Robin & Jobson, Megan, 2017. "A novel screening framework for waste heat utilization technologies," Energy, Elsevier, vol. 125(C), pages 367-381.
    2. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    3. Wallerand, Anna S. & Kermani, Maziar & Kantor, Ivan & Maréchal, François, 2018. "Optimal heat pump integration in industrial processes," Applied Energy, Elsevier, vol. 219(C), pages 68-92.
    4. Urbanucci, Luca & Bruno, Joan Carles & Testi, Daniele, 2019. "Thermodynamic and economic analysis of the integration of high-temperature heat pumps in trigeneration systems," Applied Energy, Elsevier, vol. 238(C), pages 516-533.
    5. Oluleye, Gbemi & Smith, Robin & Jobson, Megan, 2016. "Modelling and screening heat pump options for the exploitation of low grade waste heat in process sites," Applied Energy, Elsevier, vol. 169(C), pages 267-286.
    6. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.
    7. Miah, J.H. & Griffiths, A. & McNeill, R. & Poonaji, I. & Martin, R. & Leiser, A. & Morse, S. & Yang, A. & Sadhukhan, J., 2015. "Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories," Applied Energy, Elsevier, vol. 160(C), pages 172-184.
    8. Stampfli, Jan A. & Atkins, Martin J. & Olsen, Donald G. & Walmsley, Michael R.W. & Wellig, Beat, 2019. "Practical heat pump and storage integration into non-continuous processes: A hybrid approach utilizing insight based and nonlinear programming techniques," Energy, Elsevier, vol. 182(C), pages 236-253.
    9. Schlosser, Florian & Seevers, Jan-Peter & Peesel, Ron-Hendrik & Walmsley, Timothy Gordon, 2019. "System efficient integration of standby control and heat pump storage systems in manufacturing processes," Energy, Elsevier, vol. 181(C), pages 395-406.
    10. van de Bor, D.M. & Infante Ferreira, C.A. & Kiss, Anton A., 2015. "Low grade waste heat recovery using heat pumps and power cycles," Energy, Elsevier, vol. 89(C), pages 864-873.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Schlosser & Heinrich Wiebe & Timothy G. Walmsley & Martin J. Atkins & Michael R. W. Walmsley & Jens Hesselbach, 2020. "Heat Pump Bridge Analysis Using the Modified Energy Transfer Diagram," Energies, MDPI, vol. 14(1), pages 1-24, December.
    2. Zhang, Sheng & Ocłoń, Paweł & Klemeš, Jiří Jaromír & Michorczyk, Piotr & Pielichowska, Kinga & Pielichowski, Krzysztof, 2022. "Renewable energy systems for building heating, cooling and electricity production with thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Rok Gomilšek & Lidija Čuček & Marko Homšak & Raymond R. Tan & Zdravko Kravanja, 2020. "Carbon Emissions Constrained Energy Planning for Aluminum Products," Energies, MDPI, vol. 13(11), pages 1-18, June.
    4. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Yee Van Fan & Zorka Novak Pintarič & Jiří Jaromír Klemeš, 2020. "Emerging Tools for Energy System Design Increasing Economic and Environmental Sustainability," Energies, MDPI, vol. 13(16), pages 1-25, August.
    6. Leonid M. Ulyev & Maksim V. Kanischev & Roman E. Chibisov & Mikhail A. Vasilyev, 2021. "Heat Integration of an Industrial Unit for the Ethylbenzene Production," Energies, MDPI, vol. 14(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    3. Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
    4. Florian Schlosser & Heinrich Wiebe & Timothy G. Walmsley & Martin J. Atkins & Michael R. W. Walmsley & Jens Hesselbach, 2020. "Heat Pump Bridge Analysis Using the Modified Energy Transfer Diagram," Energies, MDPI, vol. 14(1), pages 1-24, December.
    5. Walden, Jasper V.M. & Wellig, Beat & Stathopoulos, Panagiotis, 2023. "Heat pump integration in non-continuous industrial processes by Dynamic Pinch Analysis Targeting," Applied Energy, Elsevier, vol. 352(C).
    6. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Elsa Klinac & James Kenneth Carson & Duy Hoang & Qun Chen & Donald John Cleland & Timothy Gordon Walmsley, 2023. "Multi-Level Process Integration of Heat Pumps in Meat Processing," Energies, MDPI, vol. 16(8), pages 1-16, April.
    8. Martínez-Rodríguez, Guillermo & Fuentes-Silva, Amanda L. & Velázquez-Torres, Daniel & Picón-Núñez, Martín, 2022. "Comprehensive solar thermal integration for industrial processes," Energy, Elsevier, vol. 239(PD).
    9. Raphael Agner & Benjamin H. Y. Ong & Jan A. Stampfli & Pierre Krummenacher & Beat Wellig, 2022. "A Graphical Method for Combined Heat Pump and Indirect Heat Recovery Integration," Energies, MDPI, vol. 15(8), pages 1-21, April.
    10. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    11. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    12. Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
    13. Oluleye, Gbemi & Jiang, Ning & Smith, Robin & Jobson, Megan, 2017. "A novel screening framework for waste heat utilization technologies," Energy, Elsevier, vol. 125(C), pages 367-381.
    14. Tan, Zhimin & Feng, Xiao & Yang, Minbo & Wang, Yufei, 2022. "Energy and economic performance comparison of heat pump and power cycle in low grade waste heat recovery," Energy, Elsevier, vol. 260(C).
    15. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Cox, Jordan & Belding, Scott & Lowder, Travis, 2022. "Application of a novel heat pump model for estimating economic viability and barriers of heat pumps in dairy applications in the United States," Applied Energy, Elsevier, vol. 310(C).
    17. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Kiss, Anton A. & Smith, Robin, 2020. "Rethinking energy use in distillation processes for a more sustainable chemical industry," Energy, Elsevier, vol. 203(C).
    19. Pieper, Henrik & Ommen, Torben & Kjær Jensen, Jonas & Elmegaard, Brian & Brix Markussen, Wiebke, 2020. "Comparison of COP estimation methods for large-scale heat pumps used in energy planning," Energy, Elsevier, vol. 205(C).
    20. Tilia Dahou & Patrick Dutournié & Lionel Limousy & Simona Bennici & Nicolas Perea, 2019. "Recovery of Low-Grade Heat (Heat Waste) from a Cogeneration Unit for Woodchips Drying: Energy and Economic Analyses," Energies, MDPI, vol. 12(3), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:635-:d:315808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.