IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp395-406.html
   My bibliography  Save this article

System efficient integration of standby control and heat pump storage systems in manufacturing processes

Author

Listed:
  • Schlosser, Florian
  • Seevers, Jan-Peter
  • Peesel, Ron-Hendrik
  • Walmsley, Timothy Gordon

Abstract

Prerequisite for system efficiency towards an industrial energy transition is the reducing of energy demand on the process level. In typical manufacturing systems with machine tools and washing machines, the proper design of intelligent standby control and heat pump storage system (HPS) represent high efficiency. The integration of HPS is complicated due to high non-continuity, especially when implementing a standby control system. Our approach aims at designing one single HPS for multiple heat sources and sinks. Robust design should consider the various influencing material flow system factors. For the generation of stochastic heating and cooling demand sum curves, 512 Design of Experiments-based material flow simulations for each of three standby scenarios have been conducted. These curves serve as input data for HPS sizing and dynamic thermal system simulation. The combined integration of an HPS and a practical standby control system offers the best compromise in terms of system efficiency with significantly lower investment costs and only slightly lower energy savings than ideal standby operation. Compared to the initial state, the electrical energy demand of the machines can be reduced by 27% and both the heating (83%) and cooling (48%) demand can be efficiently covered by HPs.

Suggested Citation

  • Schlosser, Florian & Seevers, Jan-Peter & Peesel, Ron-Hendrik & Walmsley, Timothy Gordon, 2019. "System efficient integration of standby control and heat pump storage systems in manufacturing processes," Energy, Elsevier, vol. 181(C), pages 395-406.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:395-406
    DOI: 10.1016/j.energy.2019.05.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219309958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wallerand, Anna S. & Kermani, Maziar & Kantor, Ivan & Maréchal, François, 2018. "Optimal heat pump integration in industrial processes," Applied Energy, Elsevier, vol. 219(C), pages 68-92.
    2. Gudrun P. Kiesmüller & Julia Zimmermann, 2018. "The influence of spare parts provisioning on buffer size in a production system," IISE Transactions, Taylor & Francis Journals, vol. 50(5), pages 367-380, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Schlosser & Heinrich Wiebe & Timothy G. Walmsley & Martin J. Atkins & Michael R. W. Walmsley & Jens Hesselbach, 2020. "Heat Pump Bridge Analysis Using the Modified Energy Transfer Diagram," Energies, MDPI, vol. 14(1), pages 1-24, December.
    2. Raphael Agner & Benjamin H. Y. Ong & Jan A. Stampfli & Pierre Krummenacher & Beat Wellig, 2022. "A Graphical Method for Combined Heat Pump and Indirect Heat Recovery Integration," Energies, MDPI, vol. 15(8), pages 1-21, April.
    3. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Limei Gai & Petar Sabev Varbanov & Timothy Gordon Walmsley & Jiří Jaromír Klemeš, 2020. "Critical Analysis of Process Integration Options for Joule-Cycle and Conventional Heat Pumps," Energies, MDPI, vol. 13(3), pages 1-25, February.
    5. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Maximilian Sporleder & Max Burkhardt & Thomas Kohne & Daniel Moog & Matthias Weigold, 2020. "Optimum Design and Control of Heat Pumps for Integration into Thermohydraulic Networks," Sustainability, MDPI, vol. 12(22), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    2. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    3. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    4. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2021. "Techno-economic comparison of 100% renewable urea production processes," Applied Energy, Elsevier, vol. 284(C).
    5. Elsa Klinac & James Kenneth Carson & Duy Hoang & Qun Chen & Donald John Cleland & Timothy Gordon Walmsley, 2023. "Multi-Level Process Integration of Heat Pumps in Meat Processing," Energies, MDPI, vol. 16(8), pages 1-16, April.
    6. Ikeda, Shintaro & Ooka, Ryozo, 2019. "Application of differential evolution-based constrained optimization methods to district energy optimization and comparison with dynamic programming," Applied Energy, Elsevier, vol. 254(C).
    7. Kunteng Huang & Weicong Xu & Shuai Deng & Jianyuan Zhang & Ruihua Chen & Li Zhao, 2024. "Enhancing Thermal Performance of Thermodynamic Cycle through Zeotropic Mixture Composition Regulation: An Overview," Energies, MDPI, vol. 17(7), pages 1-20, April.
    8. Akulker, Handan & Aydin, Erdal, 2023. "Optimal design and operation of a multi-energy microgrid using mixed-integer nonlinear programming: Impact of carbon cap and trade system and taxing on equipment selections," Applied Energy, Elsevier, vol. 330(PA).
    9. Yang, Minbo & Li, Ting & Feng, Xiao & Wang, Yufei, 2020. "A simulation-based targeting method for heat pump placements in heat exchanger networks," Energy, Elsevier, vol. 203(C).
    10. Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
    11. Maziar Kermani & Ivan D. Kantor & Anna S. Wallerand & Julia Granacher & Adriano V. Ensinas & François Maréchal, 2019. "A Holistic Methodology for Optimizing Industrial Resource Efficiency," Energies, MDPI, vol. 12(7), pages 1-33, April.
    12. Mota-Babiloni, Adrián & Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Molés, Francisco & Amat-Albuixech, Marta & Barragán-Cervera, Ángel, 2018. "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, Elsevier, vol. 165(PB), pages 1248-1258.
    13. Kiesmüller, G.P. & Sachs, F.E., 2020. "Spare parts or buffer? How to design a transfer line with unreliable machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 121-134.
    14. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.
    15. Wang, Ligang & Zhang, Yumeng & Li, Chengzhou & Pérez-Fortes, Mar & Lin, Tzu-En & Maréchal, François & Van herle, Jan & Yang, Yongping, 2020. "Triple-mode grid-balancing plants via biomass gasification and reversible solid-oxide cell stack: Concept and thermodynamic performance," Applied Energy, Elsevier, vol. 280(C).
    16. Dino, Giuseppe E. & Palomba, Valeria & Nowak, Eliza & Frazzica, Andrea, 2021. "Experimental characterization of an innovative hybrid thermal-electric chiller for industrial cooling and refrigeration application," Applied Energy, Elsevier, vol. 281(C).
    17. Möhren, S. & Meyer, J. & Krause, H. & Saars, L., 2021. "A multiperiod approach for waste heat and renewable energy integration of industrial sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    19. Zhao, Yi & Hagi, Hayato & Delahaye, Bruno & Maréchal, François, 2024. "A holistic approach to refinery decarbonization based on atomic, energy and exergy flow analysis," Energy, Elsevier, vol. 296(C).
    20. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:395-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.