Modeling and Design of a Multi-Tubular Packed-Bed Reactor for Methanol Steam Reforming over a Cu/ZnO/Al 2 O 3 Catalyst
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Iulianelli, A. & Ribeirinha, P. & Mendes, A. & Basile, A., 2014. "Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 355-368.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Huajing & Xu, Chao & Yu, Hangyu & Wu, Hao & Jin, Fei & Xiao, Feng & Liao, Zhirong, 2022. "Enhancement of methanol steam reforming in a tubular fixed-bed reactor with simultaneous heating inside and outside," Energy, Elsevier, vol. 254(PB).
- Ha, Chan & Zhou, Zhaozhou & Qin, Jiang & Wang, Cong & Liu, Zekuan & Leng, Shuang, 2024. "Structural optimization calculation of methanol spiral tube reformer based on waste heat utilization and experimental verification of reactor performance," Renewable Energy, Elsevier, vol. 226(C).
- Li, Na & Cui, Xiaoti & Zhu, Jimin & Zhou, Mengfan & Liso, Vincenzo & Cinti, Giovanni & Sahlin, Simon Lennart & Araya, Samuel Simon, 2023. "A review of reformed methanol-high temperature proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Giovanni Cinti & Vincenzo Liso & Simon Lennart Sahlin & Samuel Simon Araya, 2020. "System Design and Modeling of a High Temperature PEM Fuel Cell Operated with Ammonia as a Fuel," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Kiara Capreece Premlall & David Lokhat, 2020. "Reducing Energy Requirements in the Production of Acrylic Acid: Simulation and Design of a Multitubular Reactor Train," Energies, MDPI, vol. 13(8), pages 1-14, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dega, Frank Blondel & Chamoumi, Mostafa & Braidy, Nadi & Abatzoglou, Nicolas, 2019. "Autothermal dry reforming of methane with a nickel spinellized catalyst prepared from a negative value metallurgical residue," Renewable Energy, Elsevier, vol. 138(C), pages 1239-1249.
- Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
- Jiang, Dongyue & Yang, Wenming & Tang, Aikun, 2016. "A refractory selective solar absorber for high performance thermochemical steam reforming," Applied Energy, Elsevier, vol. 170(C), pages 286-292.
- Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
- Sun, Zhao & Hu, Chenfeng & Zhang, Rongjun & Li, Hongwei & Wu, Yu & Sun, Zhiqiang, 2023. "Simulation of the deoxygenated and decarburized biomass cascade utilization system for comprehensive upgrading of green hydrogen generation," Renewable Energy, Elsevier, vol. 219(P2).
- Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
- Cheng, Ze-Dong & Men, Jing-Jing & Liu, Shi-Cheng & He, Ya-Ling, 2019. "Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production," Applied Energy, Elsevier, vol. 250(C), pages 131-146.
- Hou, Tengfei & Zhang, Shaoyin & Chen, Yongdong & Wang, Dazhi & Cai, Weijie, 2015. "Hydrogen production from ethanol reforming: Catalysts and reaction mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 132-148.
- Hyemin Song & Younghyeon Kim & Dongjin Yu & Byoung Jae Kim & Hyunjin Ji & Sangseok Yu, 2020. "A Computational Analysis of a Methanol Steam Reformer Using Phase Change Heat Transfer," Energies, MDPI, vol. 13(17), pages 1-14, August.
- Ribeirinha, P. & Alves, I. & Vázquez, F. Vidal & Schuller, G. & Boaventura, M. & Mendes, A., 2017. "Heat integration of methanol steam reformer with a high-temperature polymeric electrolyte membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 468-477.
- Pravakar Mohanty & Kamal K. Pant & Ritesh Mittal, 2015. "Hydrogen generation from biomass materials: challenges and opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 139-155, March.
- Wu, Zhen & Tan, Peng & Chen, Bin & Cai, Weizi & Chen, Meina & Xu, Xiaoming & Zhang, Zaoxiao & Ni, Meng, 2019. "Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK," Energy, Elsevier, vol. 175(C), pages 567-579.
- Radenahmad, Nikdalila & Afif, Ahmed & Petra, Pg Iskandar & Rahman, Seikh M.H. & Eriksson, Sten-G. & Azad, Abul K., 2016. "Proton-conducting electrolytes for direct methanol and direct urea fuel cells – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1347-1358.
- Batet, David & Zohra, Fatema T. & Kristensen, Simon B. & Andreasen, Søren J. & Diekhöner, Lars, 2020. "Continuous durability study of a high temperature polymer electrolyte membrane fuel cell stack," Applied Energy, Elsevier, vol. 277(C).
- Hyunyong Lee & Inchul Jung & Gilltae Roh & Youngseung Na & Hokeun Kang, 2020. "Comparative Analysis of On-Board Methane and Methanol Reforming Systems Combined with HT-PEM Fuel Cell and CO 2 Capture/Liquefaction System for Hydrogen Fueled Ship Application," Energies, MDPI, vol. 13(1), pages 1-25, January.
- Ma, Zhao & Yang, Wei-Wei & Li, Ming-Jia & He, Ya-Ling, 2018. "High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions," Applied Energy, Elsevier, vol. 230(C), pages 769-783.
- Eyal, Amnon & Tartakovsky, Leonid, 2020. "Second-law analysis of the reforming-controlled compression ignition," Applied Energy, Elsevier, vol. 263(C).
- Ha, Chan & Zhou, Zhaozhou & Qin, Jiang & Wang, Cong & Liu, Zekuan & Leng, Shuang, 2024. "Structural optimization calculation of methanol spiral tube reformer based on waste heat utilization and experimental verification of reactor performance," Renewable Energy, Elsevier, vol. 226(C).
- Cha, Junyoung & Park, Yongha & Brigljević, Boris & Lee, Boreum & Lim, Dongjun & Lee, Taeho & Jeong, Hyangsoo & Kim, Yongmin & Sohn, Hyuntae & Mikulčić, Hrvoje & Lee, Kyung Moon & Nam, Dong Hoon & Lee,, 2021. "An efficient process for sustainable and scalable hydrogen production from green ammonia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Faba, Laura & Díaz, Eva & Ordóñez, Salvador, 2015. "Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 273-287.
More about this item
Keywords
methanol steam reforming; multi-tubular packed-bed reformer; hydrogen production; temperature profile; geometric parameter;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:610-:d:315015. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.