IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p395-d308322.html
   My bibliography  Save this article

Analytical Approach to the Exergy Destruction and the Simple Expansion Work Potential in the Constant Internal Energy and Volume Combustion Process

Author

Listed:
  • Jeongwoo Song

    (Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • Han Ho Song

    (Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

Abstract

The exergy destruction due to the irreversibility of the combustion process has been regarded as one of the key losses of an internal combustion engine. However, there has been little discussion on the direct relationship between the exergy destruction and the work output potential of an engine. In this study, an analytical approach is applied to discuss the relationship between the exergy destruction and efficiency by assuming a simple thermodynamic system simulating an internal combustion engine operation. In this simplified configuration, the exergy destruction during the combustion process is mainly affected by the temperature, which supports well-known facts in the literature. However, regardless of this exergy destruction, the work potential in this simple engine architecture is mainly affected by the pressure during the combustion process. In other words, if these pressure conditions are the same, increasing the system temperature to reduce the exergy destruction does not lead to an increase in the expansion work; rather, it only results in an increase in the remaining exergy after expansion. In a typical internal combustion engine, temperatures before combustion timing must be increased to reduce the exergy destruction, but increasing pressure before combustion timing is a key strategy to increase efficiency.

Suggested Citation

  • Jeongwoo Song & Han Ho Song, 2020. "Analytical Approach to the Exergy Destruction and the Simple Expansion Work Potential in the Constant Internal Energy and Volume Combustion Process," Energies, MDPI, vol. 13(2), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:395-:d:308322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amjad, A.K. & Khoshbakhi Saray, R. & Mahmoudi, S.M.S. & Rahimi, A., 2011. "Availability analysis of n-heptane and natural gas blends combustion in HCCI engines," Energy, Elsevier, vol. 36(12), pages 6900-6909.
    2. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    3. Haifeng Liu & Junsheng Ma & Laihui Tong & Guixiang Ma & Zunqing Zheng & Mingfa Yao, 2018. "Investigation on the Potential of High Efficiency for Internal Combustion Engines," Energies, MDPI, vol. 11(3), pages 1-20, February.
    4. Fu, Jianqin & Liu, Jingping & Wang, Yong & Deng, Banglin & Yang, Yanping & Feng, Renhua & Yang, Jing, 2014. "A comparative study on various turbocharging approaches based on IC engine exhaust gas energy recovery," Applied Energy, Elsevier, vol. 113(C), pages 248-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    2. Wei, Jianan & Liu, Haifeng & Zhu, Hongyan & Cai, Yuqing & Wang, Hu & Yao, Mingfa, 2023. "Energy analysis and optimization of iso-octane and n-heptane combustion process," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    2. Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
    3. Yuh-Yih Wu & James H. Wang & Faizan Mushtaq Mir, 2018. "Improving the Thermal Efficiency of the Homogeneous Charge Compression Ignition Engine by Using Various Combustion Patterns," Energies, MDPI, vol. 11(11), pages 1-20, November.
    4. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    5. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    6. Shen, Kai & Xu, Zishun & Chen, Hong & Zhang, Zhendong, 2021. "Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine," Energy, Elsevier, vol. 215(PB).
    7. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    8. Sun, Hongjie & Yan, Feng & Yu, Hao & Su, W.H., 2015. "Analysis of exergy loss of gasoline surrogate combustion process based on detailed chemical kinetics," Applied Energy, Elsevier, vol. 152(C), pages 11-19.
    9. Duarte, Jorge & Amador, Germán & Garcia, Jesus & Fontalvo, Armando & Vasquez Padilla, Ricardo & Sanjuan, Marco & Gonzalez Quiroga, Arturo, 2014. "Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels," Energy, Elsevier, vol. 71(C), pages 137-147.
    10. Pedrozo, Vinícius B. & Zhao, Hua, 2018. "Improvement in high load ethanol-diesel dual-fuel combustion by Miller cycle and charge air cooling," Applied Energy, Elsevier, vol. 210(C), pages 138-151.
    11. Saxena, Samveg & Shah, Nihar & Bedoya, Ivan & Phadke, Amol, 2014. "Understanding optimal engine operating strategies for gasoline-fueled HCCI engines using crank-angle resolved exergy analysis," Applied Energy, Elsevier, vol. 114(C), pages 155-163.
    12. Wang, Rumin & Qiao, Junhao & Jia, Dongdong & Shen, Dazhi & Duan, Xiongbo & Liu, Jingping, 2024. "Effects of asynchronous late intake valve closing combined with high geometric compression ratio and exhaust gas recirculation on combustion and fuel consumption in a turbocharged SI engine:An experim," Energy, Elsevier, vol. 290(C).
    13. Sarabchi, N. & Khoshbakhti Saray, R. & Mahmoudi, S.M.S., 2013. "Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system," Energy, Elsevier, vol. 55(C), pages 965-976.
    14. Zambalov, Sergey & Kasaev, Dmitry & Yakovlev, Igor & Ji, Changwei & Yang, Jinxin & Maznoy, Anatoly, 2024. "Effect of over-expansion in a cycloidal rotary engine," Energy, Elsevier, vol. 302(C).
    15. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    16. Razmara, M. & Bidarvatan, M. & Shahbakhti, M. & Robinett, R.D., 2016. "Optimal exergy-based control of internal combustion engines," Applied Energy, Elsevier, vol. 183(C), pages 1389-1403.
    17. Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2019. "An exergy analysis methodology for internal combustion engines using a multi-zone simulation of dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 256(C).
    18. Chen, Guisheng & Sun, Min & Li, Junda & Wang, Jiguang & Shen, Yinggang & Liang, Daping & Xiao, Renxin, 2024. "Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization," Energy, Elsevier, vol. 294(C).
    19. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    20. Lu, Yiji & Roskilly, Anthony Paul & Yu, Xiaoli & Jiang, Long & Chen, Longfei, 2018. "Technical feasibility study of scroll-type rotary gasoline engine: A compact and efficient small-scale Humphrey cycle engine," Applied Energy, Elsevier, vol. 221(C), pages 67-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:395-:d:308322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.