IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223034527.html
   My bibliography  Save this article

Effects of asynchronous late intake valve closing combined with high geometric compression ratio and exhaust gas recirculation on combustion and fuel consumption in a turbocharged SI engine:An experimental study

Author

Listed:
  • Wang, Rumin
  • Qiao, Junhao
  • Jia, Dongdong
  • Shen, Dazhi
  • Duan, Xiongbo
  • Liu, Jingping

Abstract

To achieve low-carbon transportation, a novel Miller cycle was implemented by using asynchronous late intake valve closing (ALIVC) in the high compression ratio turbocharged SI engine. The effects of the Miller cycle on combustion and performance were investigated and compared with the original Otto cycle. Based on this, EGR was introduced and its effects on Miller cycle engine performance and energy balance were investigated. The results show that the Miller-CR12.5 can reduce pumping loss and suppress knock without sacrificing power output. Compared to the Otto-CR10.5, the Miller-CR12.5 achieves a 6.7 % reduction in BSFC at the lowest fuel consumption point and a 10–11.4 % reduction at high loads. The lower peak combustion temperature allows the Miller-CR12.5 to eliminate fuel-enriched injection at high loads, reducing the heat transfer and combustion loss. The introduction of EGR in the ALIVC Miller cycle engine decreases the peak HRR and extends the combustion duration. However, the advanced 50 % combustion position and increased effective expansion ratio can improve engine performance. At 10 % EGR rate, the BSFC obtains a 2.1 % reduction and NOx emissions are reduced by 62 %. As the EGR rate increases, the heat transfer and exhaust loss decrease, but there is a slight increase in combustion loss.

Suggested Citation

  • Wang, Rumin & Qiao, Junhao & Jia, Dongdong & Shen, Dazhi & Duan, Xiongbo & Liu, Jingping, 2024. "Effects of asynchronous late intake valve closing combined with high geometric compression ratio and exhaust gas recirculation on combustion and fuel consumption in a turbocharged SI engine:An experim," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034527
    DOI: 10.1016/j.energy.2023.130058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Kai & Xu, Zishun & Chen, Hong & Zhang, Zhendong, 2021. "Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine," Energy, Elsevier, vol. 215(PB).
    2. Cai, Tao & Zhao, Dan & Sun, Yuze & Ni, Siliang & Li, Weixuan & Guan, Di & Wang, Bing, 2021. "Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Li, Yangyang & Duan, Xiongbo & Fu, Jianqin & Liu, Jingping & Wang, Shuqian & Dong, Hao & Xie, Yunkun, 2019. "Development of a method for on-board measurement of instant engine torque and fuel consumption rate based on direct signal measurement and RGF modelling under vehicle transient operating conditions," Energy, Elsevier, vol. 189(C).
    4. Zhou, Feng & Fu, Jianqin & Ke, Wenhui & Liu, Jingping & Yuan, Zhipeng & Luo, Baojun, 2017. "Effects of lean combustion coupling with intake tumble on economy and emission performance of gasoline engine," Energy, Elsevier, vol. 133(C), pages 366-379.
    5. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    2. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    3. Shen, Kai & Xu, Zishun & Zhu, Zhongpan & Yang, Linsen, 2022. "Combined effects of electric supercharger and LP-EGR on performance of turbocharged engine," Energy, Elsevier, vol. 244(PB).
    4. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    5. Shen, Kai & Xu, Zishun & Chen, Hong & Zhang, Zhendong, 2021. "Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine," Energy, Elsevier, vol. 215(PB).
    6. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    7. Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
    8. Pedrozo, Vinícius B. & Zhao, Hua, 2018. "Improvement in high load ethanol-diesel dual-fuel combustion by Miller cycle and charge air cooling," Applied Energy, Elsevier, vol. 210(C), pages 138-151.
    9. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    10. Tian, Xinghua & Xu, Li & Peng, Qingguo & Wu, Yifeng & Wang, Hao & Yan, Feng & Zhang, Long & Teng, Peng & Fu, Shuai, 2024. "Experimental and numerical investigation on energy efficiency improvement of methane/propane added of hydrogen-fueled micro power generation," Energy, Elsevier, vol. 302(C).
    11. Galindo, José & Navarro, Roberto & De la Morena, Joaquín & Pitarch, Rafael & Guilain, Stéphane, 2022. "On combustion instability induced by water condensation in a low-pressure exhaust gas recirculation system for spark-ignition engines," Energy, Elsevier, vol. 261(PA).
    12. d'Adamo, A. & Iacovano, C. & Fontanesi, S., 2020. "Large-Eddy simulation of lean and ultra-lean combustion using advanced ignition modelling in a transparent combustion chamber engine," Applied Energy, Elsevier, vol. 280(C).
    13. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    14. Zambalov, Sergey & Kasaev, Dmitry & Yakovlev, Igor & Ji, Changwei & Yang, Jinxin & Maznoy, Anatoly, 2024. "Effect of over-expansion in a cycloidal rotary engine," Energy, Elsevier, vol. 302(C).
    15. Wróblewski, Piotr, 2023. "Investigation of energy losses of the internal combustion engine taking into account the correlation of the hydrophobic and hydrophilic," Energy, Elsevier, vol. 264(C).
    16. Li, Yangtao & Khajepour, Amir & Devaud, Cécile & Liu, Kaimin, 2017. "Power and fuel economy optimizations of gasoline engines using hydraulic variable valve actuation system," Applied Energy, Elsevier, vol. 206(C), pages 577-593.
    17. Jia, Huiqiao & Zou, Chun & Lu, Lixin & Zheng, Hangfei & Qian, Xiang & Yao, Hong, 2018. "Ignition of CH4 intensely diluted with N2 and CO2 versus hot air in a counterflow jets," Energy, Elsevier, vol. 165(PB), pages 315-325.
    18. Chen, Guisheng & Sun, Min & Li, Junda & Wang, Jiguang & Shen, Yinggang & Liang, Daping & Xiao, Renxin, 2024. "Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization," Energy, Elsevier, vol. 294(C).
    19. Tan, Dongli & Wu, Yao & Lv, Junshuai & Li, Jian & Ou, Xiaoyu & Meng, Yujun & Lan, Guanglin & Chen, Yanhui & Zhang, Zhiqing, 2023. "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," Energy, Elsevier, vol. 263(PC).
    20. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.