IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v295y2021ics0306261921004463.html
   My bibliography  Save this article

Distributed coordinative transaction of a community integrated energy system based on a tri-level game model

Author

Listed:
  • Wang, Haiyang
  • Zhang, Chenghui
  • Li, Ke
  • Liu, Shuai
  • Li, Shuzhen
  • Wang, Yu

Abstract

As the energy market shifts from vertically integrated structures to interactive competitive structures, the transaction mechanism for resident users faces significant challenges because of its large numbers and small size. This paper proposes a distributed coordinative transaction mechanism of a community integrated energy system utilizing a tri-level game model. The vertical trading aspect is formulated as a dual-Stackelberg game, wherein the load aggregators serve as an intermediary between the energy hubs and resident users. Horizontal bidding among the energy hubs is modeled as a non-cooperative game, wherein each stakeholder pursues the optimal benefit. The equilibrium of this tri-level game is proven to exist and is solved by means of a distributed algorithm. The tri-level model is initially transformed into a bi-level problem through the Karush–Kuhn–Tucker condition and convexification, and is then solved using the distributed iterative algorithm. Finally, the effectiveness of the proposed tri-level game model and distributed solution algorithm was verified by case study, which confirmed that all stakeholders could benefit from the proposed transaction mechanism.

Suggested Citation

  • Wang, Haiyang & Zhang, Chenghui & Li, Ke & Liu, Shuai & Li, Shuzhen & Wang, Yu, 2021. "Distributed coordinative transaction of a community integrated energy system based on a tri-level game model," Applied Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921004463
    DOI: 10.1016/j.apenergy.2021.116972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921004463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    2. Wei, F. & Jing, Z.X. & Wu, Peter Z. & Wu, Q.H., 2017. "A Stackelberg game approach for multiple energies trading in integrated energy systems," Applied Energy, Elsevier, vol. 200(C), pages 315-329.
    3. Motalleb, Mahdi & Ghorbani, Reza, 2017. "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, Elsevier, vol. 202(C), pages 581-596.
    4. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
    5. Lei, Yang & Wang, Dan & Jia, Hongjie & Chen, Jingcheng & Li, Jingru & Song, Yi & Li, Jiaxi, 2020. "Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    6. Fan, Songli & Ai, Qian & Piao, Longjian, 2018. "Bargaining-based cooperative energy trading for distribution company and demand response," Applied Energy, Elsevier, vol. 226(C), pages 469-482.
    7. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    8. Aussel, Didier & Brotcorne, Luce & Lepaul, Sébastien & von Niederhäusern, Léonard, 2020. "A trilevel model for best response in energy demand-side management," European Journal of Operational Research, Elsevier, vol. 281(2), pages 299-315.
    9. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    10. Tengfei Ma & Junyong Wu & Liangliang Hao & Huaguang Yan & Dezhi Li, 2018. "A Real-Time Pricing Scheme for Energy Management in Integrated Energy Systems: A Stackelberg Game Approach," Energies, MDPI, vol. 11(10), pages 1-19, October.
    11. Wang, Jianxiao & Zhong, Haiwang & Wu, Chenye & Du, Ershun & Xia, Qing & Kang, Chongqing, 2019. "Incentivizing distributed energy resource aggregation in energy and capacity markets: An energy sharing scheme and mechanism design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    13. Kireem Han & Joohyung Lee & Junkyun Choi, 2017. "Evaluation of Demand-Side Management over Pricing Competition of Multiple Suppliers Having Heterogeneous Energy Sources," Energies, MDPI, vol. 10(9), pages 1-16, September.
    14. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yubin & Yang, Qiang & Zhou, Yue & Zheng, Yanchong, 2024. "A risk-averse day-ahead bidding strategy of transactive energy sharing microgrids with data-driven chance constraints," Applied Energy, Elsevier, vol. 353(PB).
    2. Li, Songrui & Zhang, Lihui & Nie, Lei & Wang, Jianing, 2022. "Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game," Energy, Elsevier, vol. 249(C).
    3. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    4. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
    5. Lei, Zhenxing & Liu, Mingbo & Shen, Zhijun & Lu, Wentian & Lu, Zhilin, 2023. "A data-driven Stackelberg game approach applied to analysis of strategic bidding for distributed energy resource aggregator in electricity markets," Renewable Energy, Elsevier, vol. 215(C).
    6. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    7. Wu, Qiong & Xie, Zhun & Ren, Hongbo & Li, Qifen & Yang, Yongwen, 2022. "Optimal trading strategies for multi-energy microgrid cluster considering demand response under different trading modes: A comparison study," Energy, Elsevier, vol. 254(PC).
    8. Fattaheian-Dehkordi, Sajjad & Abbaspour, Ali & Fotuhi-Firuzabad, Mahmud & Lehtonen, Matti, 2022. "A new management framework for mitigating intense ramping in distribution systems," Energy, Elsevier, vol. 254(PA).
    9. Jiang, Qian & Mu, Yunfei & Jia, Hongjie & Cao, Yan & Wang, Zibo & Wei, Wei & Hou, Kai & Yu, Xiaodan, 2022. "A Stackelberg Game-based planning approach for integrated community energy system considering multiple participants," Energy, Elsevier, vol. 258(C).
    10. Lu, Qing & Guo, Qisheng & Zeng, Wei, 2022. "Optimization scheduling of integrated energy service system in community: A bi-layer optimization model considering multi-energy demand response and user satisfaction," Energy, Elsevier, vol. 252(C).
    11. Liu, Yangyang & Zhou, Jiangxin & Zhou, Qihui & Liu, Chuanquan & Yu, Feng, 2023. "Bidding strategy of integrated energy system considering decision maker’s subjective risk aversion," Applied Energy, Elsevier, vol. 341(C).
    12. Liu, Chunming & Wang, Chunling & Yin, Yujun & Yang, Peihong & Jiang, Hui, 2022. "Bi-level dispatch and control strategy based on model predictive control for community integrated energy system considering dynamic response performance," Applied Energy, Elsevier, vol. 310(C).
    13. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    14. Wang, Yongli & Liu, Zhen & Wang, Jingyan & Du, Boxin & Qin, Yumeng & Liu, Xiaoli & Liu, Lin, 2023. "A Stackelberg game-based approach to transaction optimization for distributed integrated energy system," Energy, Elsevier, vol. 283(C).
    15. Li, Ling-Ling & Miao, Yan & Lim, Ming K. & Sethanan, Kanchana & Tseng, Ming-Lang, 2024. "Integrated energy system for low-carbon economic operation optimization: Pareto compromise programming and master-slave game," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    2. Li, Songrui & Zhang, Lihui & Nie, Lei & Wang, Jianing, 2022. "Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game," Energy, Elsevier, vol. 249(C).
    3. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    4. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    5. Li, Jiamei & Ai, Qian & Yin, Shuangrui & Hao, Ran, 2022. "An aggregator-oriented hierarchical market mechanism for multi-type ancillary service provision based on the two-loop Stackelberg game," Applied Energy, Elsevier, vol. 323(C).
    6. Kaijun Lin & Junyong Wu & Di Liu & Dezhi Li & Taorong Gong, 2018. "Energy Management of Combined Cooling, Heating and Power Micro Energy Grid Based on Leader-Follower Game Theory," Energies, MDPI, vol. 11(3), pages 1-21, March.
    7. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Ma, Xin, 2021. "Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage," Energy, Elsevier, vol. 221(C).
    8. Wu, Qiong & Xie, Zhun & Ren, Hongbo & Li, Qifen & Yang, Yongwen, 2022. "Optimal trading strategies for multi-energy microgrid cluster considering demand response under different trading modes: A comparison study," Energy, Elsevier, vol. 254(PC).
    9. Wang, Yongli & Liu, Zhen & Wang, Jingyan & Du, Boxin & Qin, Yumeng & Liu, Xiaoli & Liu, Lin, 2023. "A Stackelberg game-based approach to transaction optimization for distributed integrated energy system," Energy, Elsevier, vol. 283(C).
    10. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    11. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    13. Fioriti, Davide & Frangioni, Antonio & Poli, Davide, 2021. "Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role and business model of aggregators and users," Applied Energy, Elsevier, vol. 299(C).
    14. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    15. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2021. "Cost allocation in integrated community energy systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    17. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    18. Bhatti, Bilal Ahmad & Broadwater, Robert, 2020. "Distributed Nash Equilibrium Seeking for a Dynamic Micro-grid Energy Trading Game with Non-quadratic Payoffs," Energy, Elsevier, vol. 202(C).
    19. Elkazaz, Mahmoud & Sumner, Mark & Thomas, David, 2021. "A hierarchical and decentralized energy management system for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 291(C).
    20. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921004463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.