IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6747-d465841.html
   My bibliography  Save this article

Free and Forced Vibration Analysis of H-type and Hybrid Vertical-Axis Wind Turbines

Author

Listed:
  • Minhui Tong

    (Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
    Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA)

  • Weidong Zhu

    (Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA)

  • Xiang Zhao

    (Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
    School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610599, China)

  • Meilin Yu

    (Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA)

  • Kan Liu

    (Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA)

  • Gang Li

    (Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA)

Abstract

Vertical-axis wind turbines (VAWTs) are compact and efficient and have become increasingly popular for wind energy harvesting. This paper mainly focuses on free and forced vibration analysis of two different types of VAWTs, i.e., an H-type VAWT and a new hybrid VAWT. The H-type VAWT has a lower cost, while the hybrid VAWT has a better self-starting capability at a low wind velocity. Both of them can be used for wind energy harvesting. By using the assumed modes method, the two VAWTs are simplified by a single degree-of-freedom (SDOF) model. By utilizing the method of structural mechanics, a multi-degree-of-freedom (MDOF) model is developed for the two VAWTs and the turbines in them are reasonably simplified. Natural frequency analyses for the SDOF and MDOF models of the two VAWTs are conducted. A beam element model (BEM) of the two VAWTs is created to calculate their natural frequencies and mode shapes and to verify natural frequency results from the SDOF and MDOF models. By using the BEM of the two VAWTs, their amplitude-frequency responses are obtained from harmonic response analysis. To analyze forced vibrations of the two VAWTs, aerodynamic loads on the two VAWTs are obtained from computational fluid dynamics (CFD) simulation. By using solid element models of the two VAWTs, forced transient responses of the two VAWTs are calculated by using the aerodynamic loads from CFD simulation. Steady-state forced response amplitudes of the 1 m-mast hybrid VAWT are 23.8% and 20.5% smaller in X- and Y-directions than those of the 1 m-mast H-type VAWT, respectively. Frequency contents of the aerodynamic loads from CFD simulation are calculated, which confirm that they are periodic, and the power efficiency of the H-type VAWT is about 2.6% higher that of the hybrid VAWT.

Suggested Citation

  • Minhui Tong & Weidong Zhu & Xiang Zhao & Meilin Yu & Kan Liu & Gang Li, 2020. "Free and Forced Vibration Analysis of H-type and Hybrid Vertical-Axis Wind Turbines," Energies, MDPI, vol. 13(24), pages 1-32, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6747-:d:465841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zanforlin, Stefania & Nishino, Takafumi, 2016. "Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines," Renewable Energy, Elsevier, vol. 99(C), pages 1213-1226.
    2. Rahman, Mahmudur & Ong, Zhi Chao & Chong, Wen Tong & Julai, Sabariah & Khoo, Shin Yee, 2015. "Performance enhancement of wind turbine systems with vibration control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 43-54.
    3. Joo, Sungjun & Choi, Heungsoap & Lee, Juhee, 2015. "Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds," Energy, Elsevier, vol. 90(P1), pages 439-451.
    4. Chen, Wei-Hsin & Chen, Ching-Ying & Huang, Chun-Yen & Hwang, Chii-Jong, 2017. "Power output analysis and optimization of two straight-bladed vertical-axis wind turbines," Applied Energy, Elsevier, vol. 185(P1), pages 223-232.
    5. Liu, Kan & Yu, Meilin & Zhu, Weidong, 2019. "Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid-structure interaction study," Renewable Energy, Elsevier, vol. 140(C), pages 912-927.
    6. Abdalrahman, Gebreel & Melek, William & Lien, Fue-Sang, 2017. "Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)," Renewable Energy, Elsevier, vol. 114(PB), pages 1353-1362.
    7. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
    8. Dessoky, Amgad & Lutz, Thorsten & Bangga, Galih & Krämer, Ewald, 2019. "Computational studies on Darrieus VAWT noise mechanisms employing a high order DDES model," Renewable Energy, Elsevier, vol. 143(C), pages 404-425.
    9. Ying Wang & Wensheng Lu & Kaoshan Dai & Miaomiao Yuan & Shen-En Chen, 2018. "Dynamic Study of a Rooftop Vertical Axis Wind Turbine Tower Based on an Automated Vibration Data Processing Algorithm," Energies, MDPI, vol. 11(11), pages 1-21, November.
    10. Sengupta, A.R. & Biswas, A. & Gupta, R., 2019. "Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement," Renewable Energy, Elsevier, vol. 139(C), pages 1412-1427.
    11. Peng, H.Y. & Lam, H.F. & Liu, H.J., 2019. "Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments," Energy, Elsevier, vol. 173(C), pages 121-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    3. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    4. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).
    5. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    6. Ni, Lulu & Miao, Weipao & Li, Chun & Liu, Qingsong, 2021. "Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations," Energy, Elsevier, vol. 215(PA).
    7. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    8. Xu, Wenhao & Li, Gaohua & Zheng, Xiaobo & Li, Ye & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building," Renewable Energy, Elsevier, vol. 177(C), pages 461-474.
    9. Liang Li & Inderjit Chopra & Weidong Zhu & Meilin Yu, 2021. "Performance Analysis and Optimization of a Vertical-Axis Wind Turbine with a High Tip-Speed Ratio," Energies, MDPI, vol. 14(4), pages 1-30, February.
    10. Kun Wang & Li Zou & Aimin Wang & Peidong Zhao & Yichen Jiang, 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines," Energies, MDPI, vol. 13(17), pages 1-18, August.
    11. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    12. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    13. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    14. Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
    15. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    16. Alexander, Aaron S. & Santhanakrishnan, Arvind, 2020. "Mechanisms of power augmentation in two side-by-side vertical axis wind turbines," Renewable Energy, Elsevier, vol. 148(C), pages 600-610.
    17. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    18. Shen, He & Ruiz, Alexis & Li, Ni, 2023. "Fast online reinforcement learning control of small lift-driven vertical axis wind turbines with an active programmable four bar linkage mechanism," Energy, Elsevier, vol. 262(PA).
    19. Xu, Zhongyun & Chen, Jian & Li, Chun, 2023. "Research on the adaptability of dynamic pitch control strategies on H-type VAWT close-range arrays by simulation study," Renewable Energy, Elsevier, vol. 218(C).
    20. Masaru Furukawa & Yutaka Hara & Yoshifumi Jodai, 2022. "Analytical Model for Phase Synchronization of a Pair of Vertical-Axis Wind Turbines," Energies, MDPI, vol. 15(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6747-:d:465841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.