IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3135-d182412.html
   My bibliography  Save this article

Dynamic Study of a Rooftop Vertical Axis Wind Turbine Tower Based on an Automated Vibration Data Processing Algorithm

Author

Listed:
  • Ying Wang

    (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)

  • Wensheng Lu

    (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)

  • Kaoshan Dai

    (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
    Department of Civil Engineering, Sichuan University, Chengdu 610065, China)

  • Miaomiao Yuan

    (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)

  • Shen-En Chen

    (Department of Civil & Environmental Engineering, University of North Carolina, Charlotte, NC 28223, USA)

Abstract

When constructed on tall building rooftops, the vertical axis wind turbine (VAWT) has the potential of power generation in highly urbanized areas. In this paper, the ambient dynamic responses of a rooftop VAWT were investigated. The dynamic analysis was based on ambient measurements of the structural vibration of the VAWT (including the supporting structure), which resides on the top of a 24-story building. To help process the ambient vibration data, an automated algorithm based on stochastic subspace identification (SSI) with a fast clustering procedure was developed. The algorithm was applied to the vibration data for mode identification, and the results indicate interesting modal responses that may be affected by the building vibration, which have significant implications for the condition monitoring strategy for the VAWT. The environmental effects on the ambient vibration data were also investigated. It was found that the blade rotation speed contributes the most to the vibration responses.

Suggested Citation

  • Ying Wang & Wensheng Lu & Kaoshan Dai & Miaomiao Yuan & Shen-En Chen, 2018. "Dynamic Study of a Rooftop Vertical Axis Wind Turbine Tower Based on an Automated Vibration Data Processing Algorithm," Energies, MDPI, vol. 11(11), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3135-:d:182412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dowon Han & Young Gun Heo & Nak Joon Choi & Sang Hyun Nam & Kyoung Ho Choi & Kyung Chun Kim, 2018. "Design, Fabrication, and Performance Test of a 100-W Helical-Blade Vertical-Axis Wind Turbine at Low Tip-Speed Ratio," Energies, MDPI, vol. 11(6), pages 1-17, June.
    2. Mahmoud El-Kafafy & Christof Devriendt & Patrick Guillaume & Jan Helsen, 2017. "Automatic Tracking of the Modal Parameters of an Offshore Wind Turbine Drivetrain System," Energies, MDPI, vol. 10(4), pages 1-15, April.
    3. Yanzhao Yang & Zhiping Guo & Yanfeng Zhang & Ho Jinyama & Qingan Li, 2017. "Numerical Investigation of the Tip Vortex of a Straight-Bladed Vertical Axis Wind Turbine with Double-Blades," Energies, MDPI, vol. 10(11), pages 1-18, October.
    4. Balduzzi, Francesco & Bianchini, Alessandro & Carnevale, Ennio Antonio & Ferrari, Lorenzo & Magnani, Sandro, 2012. "Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building," Applied Energy, Elsevier, vol. 97(C), pages 921-929.
    5. Najafi, Nadia & Paulsen, Uwe Schmidt, 2017. "Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique," Energy, Elsevier, vol. 125(C), pages 405-416.
    6. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minhui Tong & Weidong Zhu & Xiang Zhao & Meilin Yu & Kan Liu & Gang Li, 2020. "Free and Forced Vibration Analysis of H-type and Hybrid Vertical-Axis Wind Turbines," Energies, MDPI, vol. 13(24), pages 1-32, December.
    2. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    2. Zhang, Yanfeng & Li, Qing'an & Zhu, Xinyu & Song, Xiaowen & Cai, Chang & Zhou, Teng & Kamada, Yasunari & Maeda, Takao & Wang, Ye & Guo, Zhiping, 2022. "Effect of the bionic blade on the flow field of a straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 258(C).
    3. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    4. Farzadi, Ramin & Zanj, Amir & Bazargan, Majid, 2024. "Effect of baffles on efficiency of darrieus vertical axis wind turbines equipped with J-type blades," Energy, Elsevier, vol. 305(C).
    5. Peng, H.Y. & Lam, H.F. & Liu, H.J., 2019. "Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments," Energy, Elsevier, vol. 173(C), pages 121-132.
    6. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    7. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    8. Jiang, Yichen & Liu, Shijie & Zao, Peidong & Yu, Yanwei & Zou, Li & Liu, Liqin & Li, Jiawen, 2022. "Experimental evaluation of a tree-shaped quad-rotor wind turbine on power output controllability and survival shutdown capability," Applied Energy, Elsevier, vol. 309(C).
    9. Xu, Wenhao & Li, Gaohua & Zheng, Xiaobo & Li, Ye & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building," Renewable Energy, Elsevier, vol. 177(C), pages 461-474.
    10. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    11. Kun Wang & Li Zou & Aimin Wang & Peidong Zhao & Yichen Jiang, 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines," Energies, MDPI, vol. 13(17), pages 1-18, August.
    12. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    13. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    14. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    15. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    16. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2015. "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, Elsevier, vol. 90(P1), pages 784-795.
    17. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    18. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    19. Hong, Taehoon & Koo, Choongwan & Kwak, Taehyun, 2013. "Framework for the implementation of a new renewable energy system in an educational facility," Applied Energy, Elsevier, vol. 103(C), pages 539-551.
    20. Acarer, Sercan & Uyulan, Çağlar & Karadeniz, Ziya Haktan, 2020. "Optimization of radial inflow wind turbines for urban wind energy harvesting," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3135-:d:182412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.