IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6620-d462537.html
   My bibliography  Save this article

Design and Operation of a Modern Polish Plant for Plastic Waste Recycling through the Degradative Depolymerization Process. A Case Study

Author

Listed:
  • Andrzej Duda

    (Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland)

  • Arkadiusz Fenicki

    (GreenTech Polska S.A., 01-242 Warsaw, Poland)

  • Patryk Molski

    (GreenTech Polska S.A., 01-242 Warsaw, Poland)

  • Elżbieta Szostak

    (Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland)

  • Piotr Duda

    (Faculty of Mechanical Engineering, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland)

Abstract

The paper describes an installation for the degradative depolymerization of polyolefin materials obtained from wastes, hereinafter also referred to as depolymerization for simplicity. The plant, on an industrial scale, is one of the few operating in Poland. However, it is one of the most modern plants in this industry. Design solutions, construction of particular technological lines, compliance with national and EU regulations and the high level of process safety were described in this paper as well as compared to other plants of this type in Poland. Different solutions were presented in drawings and photos of the plant and in fragmentary technological diagrams. The types of waste and the methods of their processing by the plant were also characterized in accordance with the applicable regulations. The waste throughput is from 2000 to 4000 kg/h, while the efficiency of the depolymerization installation itself is 1500 kg/h. The industrial-scale depolymerization process is carried out in one or two stages: by homogenization (extraction) at a temperature up to 200 °C and depolymerization at temperatures up to 400 °C. The obtained products (energy goods) are sold for further processing. The processes, devices and methods are characterized by novel, innovative solutions, covered by a number of patents, which are also described below. The advantage of the presented technology is the substantial simplification of the process and thereby a considerable reduction in investment costs. Among others, the processes of distillation and rectification (low- and negative-pressure) were abandoned.

Suggested Citation

  • Andrzej Duda & Arkadiusz Fenicki & Patryk Molski & Elżbieta Szostak & Piotr Duda, 2020. "Design and Operation of a Modern Polish Plant for Plastic Waste Recycling through the Degradative Depolymerization Process. A Case Study," Energies, MDPI, vol. 13(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6620-:d:462537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Munir, Dureem & Irfan, Muhammad F. & Usman, Muhammad R., 2018. "Hydrocracking of virgin and waste plastics: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 490-515.
    2. Hassan, H. & Hameed, B.H. & Lim, J.K., 2020. "Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elżbieta Szostak & Piotr Duda & Andrzej Duda & Natalia Górska & Arkadiusz Fenicki & Patryk Molski, 2020. "Characteristics of Plastic Waste Processing in the Modern Recycling Plant Operating in Poland," Energies, MDPI, vol. 14(1), pages 1-17, December.
    2. Wieslaw Lyskawinski & Mariusz Baranski & Cezary Jedryczka & Jacek Mikolajewicz & Roman Regulski & Dariusz Sedziak & Krzysztof Netter & Dominik Rybarczyk & Dorota Czarnecka-Komorowska & Mateusz Barczew, 2021. "Tribo-Electrostatic Separation Analysis of a Beneficial Solution in the Recycling of Mixed Poly(Ethylene Terephthalate) and High-Density Polyethylene," Energies, MDPI, vol. 14(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yongsheng & Lu, Dongsheng & Wang, Jiawei & Kawamoto, Haruo, 2022. "Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design," Energy, Elsevier, vol. 239(PC).
    2. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Changheng Li & Qing Huang & Haixiang Zhang & Qingqing Wang & Rixin Xue & Genmao Guo & Jie Hu & Tinghang Li & Junfeng Wang & Shan Hu, 2021. "Characterization of Biochars Produced by Co-Pyrolysis of Hami Melon (Cantaloupes) Straw Mixed with Polypropylene and Their Adsorption Properties of Cadmium," IJERPH, MDPI, vol. 18(21), pages 1-17, October.
    4. Anna Matuszewska & Adam Hańderek & Maciej Paczuski & Krzysztof Biernat, 2021. "Hydrocarbon Fractions from Thermolysis of Waste Plastics as Components of Engine Fuels," Energies, MDPI, vol. 14(21), pages 1-14, November.
    5. Xie, Teng & Yao, Zonglu & Huo, Lili & Jia, Jixiu & Zhang, Peizhen & Tian, Liwei & Zhao, Lixin, 2023. "Characteristics of biochar derived from the co-pyrolysis of corn stalk and mulch film waste," Energy, Elsevier, vol. 262(PB).
    6. Marcin Bielecki & Valentina Zubkova & Andrzej Strojwas, 2023. "An Analysis of the Influence of Low Density Polyethylene, Novolac, and Coal Tar Pitch Additives on the Decrease in Content of Impurities Emitted from Densified Pea Husks during the Process of Their Py," Energies, MDPI, vol. 16(6), pages 1-16, March.
    7. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    8. Li, Moshan & Lu, Yiyu & Hu, Erfeng & Yang, Yang & Tian, Yishui & Dai, Chongyang & Li, Chenhao, 2023. "Fast co-pyrolysis characteristics of high-alkali coal and polyethylene using infrared rapid heating," Energy, Elsevier, vol. 266(C).
    9. Zhao, Xiang & Klemeš, Jiří Jaromír & Fengqi You,, 2022. "Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Li, Qingyin & Lin, Haisheng & Fan, Huailin & Zhang, Shu & Yuan, Xiangzhou & Wang, Yi & Xiang, Jun & Hu, Song & Bkangmo Kontchouo, Félix Mérimé & Hu, Xun, 2021. "Co-pyrolysis of swine manure and pinewood sawdust: Evidence of cross-interaction of the volatiles and profound impacts on product characteristics," Renewable Energy, Elsevier, vol. 179(C), pages 1370-1384.
    11. Wang, Yuzhuo & Wu, Jun Jie, 2023. "Thermochemical conversion of biomass: Potential future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    12. Varma, Anil Kumar & Lal, Navneeta & Rathore, Ashwani Kumar & Katiyar, Rajesh & Thakur, Lokendra Singh & Shankar, Ravi & Mondal, Prasenjit, 2021. "Thermal, kinetic and thermodynamic study for co-pyrolysis of pine needles and styrofoam using thermogravimetric analysis," Energy, Elsevier, vol. 218(C).
    13. Ikram Uddin & Muhammad Sohail & Muhammad Ijaz Hussain & Norah Alhokbany & Juan Amaro-Gahete & Rafael Estévez, 2023. "Probing the Pyrolysis Process of Rice Straw over a “Dual-Catalyst Bed” for the Production of Fuel Gases and Value-Added Chemicals," Sustainability, MDPI, vol. 15(14), pages 1-12, July.
    14. Yin Ting Chu & Jianzhao Zhou & Yuan Wang & Yue Liu & Jingzheng Ren, 2023. "Current State, Development and Future Directions of Medical Waste Valorization," Energies, MDPI, vol. 16(3), pages 1-28, January.
    15. Dmitry Porshnov, 2022. "Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    16. Nguyen, Quynh Van & Choi, Yeon Seok & Jeong, Yeon Woo & Han, So Young & Choi, Sang Kyu, 2024. "Catalytic co-pyrolysis of coffee-grounds and waste polystyrene foam by calcium oxide in bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 224(C).
    17. Du, Jinlong & Shen, Tianhao & Hu, Jianhang & Zhang, Fengxia & Yang, Shiliang & Liu, Huili & Wang, Hua, 2023. "Study on thermochemical conversion of triglyceride biomass catalyzed by biochar catalyst," Energy, Elsevier, vol. 277(C).
    18. Rahman, Md Hafizur & Bhoi, Prakashbhai R. & Menezes, Pradeep L., 2023. "Pyrolysis of waste plastics into fuels and chemicals: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6620-:d:462537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.